Prioritizing Informative Features and Examples for Deep Learning from Noisy Data
- URL: http://arxiv.org/abs/2403.00013v2
- Date: Mon, 12 Aug 2024 00:07:19 GMT
- Title: Prioritizing Informative Features and Examples for Deep Learning from Noisy Data
- Authors: Dongmin Park,
- Abstract summary: We propose a systemic framework that prioritizes informative features and examples to enhance each stage of the development process.
We first propose an approach to extract only informative features that are inherent to solving a target task by using auxiliary out-of-distribution data.
Next, we introduce an approach that prioritizes informative examples from unlabeled noisy data in order to reduce the labeling cost of active learning.
- Score: 4.741012804505562
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this dissertation, we propose a systemic framework that prioritizes informative features and examples to enhance each stage of the development process. Specifically, we prioritize informative features and examples and improve the performance of feature learning, data labeling, and data selection. We first propose an approach to extract only informative features that are inherent to solving a target task by using auxiliary out-of-distribution data. We deactivate the noise features in the target distribution by using that in the out-of-distribution data. Next, we introduce an approach that prioritizes informative examples from unlabeled noisy data in order to reduce the labeling cost of active learning. In order to solve the purity-information dilemma, where an attempt to select informative examples induces the selection of many noisy examples, we propose a meta-model that finds the best balance between purity and informativeness. Lastly, we suggest an approach that prioritizes informative examples from labeled noisy data to preserve the performance of data selection. For labeled image noise data, we propose a data selection method that considers the confidence of neighboring samples to maintain the performance of the state-of-the-art Re-labeling models. For labeled text noise data, we present an instruction selection method that takes diversity into account for ranking the quality of instructions with prompting, thereby enhancing the performance of aligned large language models. Overall, our unified framework induces the deep learning development process robust to noisy data, thereby effectively mitigating noisy features and examples in real-world applications.
Related papers
- One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
The presence of noisy labels in a training dataset can significantly impact the performance of machine learning models.
We introduce a novel algorithm called TURN, which robustly and efficiently transfers the prior knowledge of pre-trained models.
arXiv Detail & Related papers (2023-10-24T20:28:59Z) - IDEAL: Influence-Driven Selective Annotations Empower In-Context
Learners in Large Language Models [66.32043210237768]
This paper introduces an influence-driven selective annotation method.
It aims to minimize annotation costs while improving the quality of in-context examples.
Experiments confirm the superiority of the proposed method on various benchmarks.
arXiv Detail & Related papers (2023-10-16T22:53:54Z) - Learning to Abstain From Uninformative Data [20.132146513548843]
We study the problem of learning and acting under a general noisy generative process.
In this problem, the data distribution has a significant proportion of uninformative samples with high noise in the label.
We propose a novel approach to learning under these conditions via a loss inspired by the selective learning theory.
arXiv Detail & Related papers (2023-09-25T15:55:55Z) - Learning to Detect Noisy Labels Using Model-Based Features [16.681748918518075]
We propose Selection-Enhanced Noisy label Training (SENT)
SENT does not rely on meta learning while having the flexibility of being data-driven.
It improves performance over strong baselines under the settings of self-training and label corruption.
arXiv Detail & Related papers (2022-12-28T10:12:13Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
meta-learner is prone to overfitting since there are only a few available samples.
When handling the data with noisy labels, the meta-learner could be extremely sensitive to label noise.
We present Eigen-Reptile (ER) that updates the meta- parameters with the main direction of historical task-specific parameters.
arXiv Detail & Related papers (2022-06-04T08:48:02Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
In continual learning, we store a subset of training examples (coreset) to be replayed later to alleviate catastrophic forgetting.
We propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration.
Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting.
arXiv Detail & Related papers (2021-06-02T11:39:25Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
We consider utilizing the underlying correlation in the data resource itself to derive different kinds of supervision signals.
We conduct extensive experiments in two public datasets and obtain significant improvement in both datasets.
arXiv Detail & Related papers (2020-02-18T06:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.