Evolving to the Future: Unseen Event Adaptive Fake News Detection on Social Media
- URL: http://arxiv.org/abs/2403.00037v2
- Date: Mon, 11 Nov 2024 18:27:18 GMT
- Title: Evolving to the Future: Unseen Event Adaptive Fake News Detection on Social Media
- Authors: Jiajun Zhang, Zhixun Li, Qiang Liu, Shu Wu, Liang Wang,
- Abstract summary: We introduce textbfFuture textbfADaptive textbfEvent-based Fake news Detection (FADE) framework.
Specifically, we train a target predictor through an adaptive augmentation strategy and graph contrastive learning to obtain higher-quality features.
We further mitigate event bias by subtracting the event-only predictor's output from the target predictor's output to obtain the final prediction.
- Score: 27.236656042545796
- License:
- Abstract: With the rapid development of social media, the wide dissemination of fake news on social media is increasingly threatening both individuals and society. One of the unique challenges for fake news detection on social media is how to detect fake news on future events. Recently, numerous fake news detection models that utilize textual information and the propagation structure of posts have been proposed. Unfortunately, most of the existing approaches can hardly handle this challenge since they rely heavily on event-specific features for prediction and cannot generalize to unseen events. To address this, we introduce \textbf{F}uture \textbf{AD}aptive \textbf{E}vent-based Fake news Detection (FADE) framework. Specifically, we train a target predictor through an adaptive augmentation strategy and graph contrastive learning to obtain higher-quality features and make more accurate overall predictions. Simultaneously, we independently train an event-only predictor to obtain biased predictions. We further mitigate event bias by subtracting the event-only predictor's output from the target predictor's output to obtain the final prediction. Encouraging results from experiments designed to emulate real-world social media conditions validate the effectiveness of our method in comparison to existing state-of-the-art approaches.
Related papers
- Enhancing Fake News Detection in Social Media via Label Propagation on Cross-modal Tweet Graph [19.409935976725446]
We present a novel method for detecting fake news in social media.
Our method densifies the graph's connectivity to capture denser interaction better.
We use three publicly available fake news datasets, Twitter, PHEME, and Weibo, for evaluation.
arXiv Detail & Related papers (2024-06-14T09:55:54Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona might have upon seeing a news message.
The proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response.
This enables more accurate and comprehensive inference on the mental state of the persona.
arXiv Detail & Related papers (2023-05-25T21:01:00Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - Multimodal Emergent Fake News Detection via Meta Neural Process Networks [36.52739834391597]
We propose an end-to-end fake news detection framework named MetaFEND.
Specifically, the proposed model integrates meta-learning and neural process methods together.
Extensive experiments are conducted on multimedia datasets collected from Twitter and Weibo.
arXiv Detail & Related papers (2021-06-22T21:21:29Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
We argue that it is critical to understand what user attributes potentially cause users to share fake news.
In fake news dissemination, confounders can be characterized by fake news sharing behavior that inherently relates to user attributes and online activities.
We propose a principled approach to alleviating selection bias in fake news dissemination.
arXiv Detail & Related papers (2020-10-20T19:37:04Z) - Connecting the Dots Between Fact Verification and Fake News Detection [21.564628184287173]
We propose a simple yet effective approach to connect the dots between fact verification and fake news detection.
Our approach makes use of the recent success of fact verification models and enables zero-shot fake news detection.
arXiv Detail & Related papers (2020-10-11T09:28:52Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
Social media has greatly enabled people to participate in online activities at an unprecedented rate.
This unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation.
We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances.
Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
arXiv Detail & Related papers (2020-04-03T18:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.