Robust Policy Learning via Offline Skill Diffusion
- URL: http://arxiv.org/abs/2403.00225v3
- Date: Thu, 22 Aug 2024 04:03:10 GMT
- Title: Robust Policy Learning via Offline Skill Diffusion
- Authors: Woo Kyung Kim, Minjong Yoo, Honguk Woo,
- Abstract summary: We present a novel offline skill learning framework, DuSkill.
DuSkill employs a guided Diffusion model to generate versatile skills extended from the limited skills in datasets.
We show that DuSkill outperforms other skill-based imitation learning and RL algorithms for several long-horizon tasks.
- Score: 6.876580618014666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skill-based reinforcement learning (RL) approaches have shown considerable promise, especially in solving long-horizon tasks via hierarchical structures. These skills, learned task-agnostically from offline datasets, can accelerate the policy learning process for new tasks. Yet, the application of these skills in different domains remains restricted due to their inherent dependency on the datasets, which poses a challenge when attempting to learn a skill-based policy via RL for a target domain different from the datasets' domains. In this paper, we present a novel offline skill learning framework DuSkill which employs a guided Diffusion model to generate versatile skills extended from the limited skills in datasets, thereby enhancing the robustness of policy learning for tasks in different domains. Specifically, we devise a guided diffusion-based skill decoder in conjunction with the hierarchical encoding to disentangle the skill embedding space into two distinct representations, one for encapsulating domain-invariant behaviors and the other for delineating the factors that induce domain variations in the behaviors. Our DuSkill framework enhances the diversity of skills learned offline, thus enabling to accelerate the learning procedure of high-level policies for different domains. Through experiments, we show that DuSkill outperforms other skill-based imitation learning and RL algorithms for several long-horizon tasks, demonstrating its benefits in few-shot imitation and online RL.
Related papers
- Skills Regularized Task Decomposition for Multi-task Offline Reinforcement Learning [11.790581500542439]
Reinforcement learning (RL) with diverse offline datasets can have the advantage of leveraging the relation of multiple tasks.
We present a skill-based multi-task RL technique on heterogeneous datasets that are generated by behavior policies of different quality.
We show that our multi-task offline RL approach is robust to the mixed configurations of different-quality datasets.
arXiv Detail & Related papers (2024-08-28T07:36:20Z) - Acquiring Diverse Skills using Curriculum Reinforcement Learning with Mixture of Experts [58.220879689376744]
Reinforcement learning (RL) is a powerful approach for acquiring a good-performing policy.
We propose textbfDiverse textbfSkill textbfLearning (Di-SkilL) for learning diverse skills.
We show on challenging robot simulation tasks that Di-SkilL can learn diverse and performant skills.
arXiv Detail & Related papers (2024-03-11T17:49:18Z) - CDFSL-V: Cross-Domain Few-Shot Learning for Videos [58.37446811360741]
Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples.
Existing methods in video action recognition rely on large labeled datasets from the same domain.
We propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning.
arXiv Detail & Related papers (2023-09-07T19:44:27Z) - Granger Causal Interaction Skill Chains [35.143372688036685]
Reinforcement Learning (RL) has demonstrated promising results in learning policies for complex tasks, but it often suffers from low sample efficiency and limited transferability.
We introduce the Chain of Interaction Skills (COInS) algorithm, which focuses on controllability factored in domains to identify a small number of task-agnostic skills that still permit a high degree of control.
We also demonstrate the transferability of skills learned by COInS, using variants of Breakout, a common RL benchmark, and show 2-3x improvement in both sample efficiency and final performance compared to standard RL baselines.
arXiv Detail & Related papers (2023-06-15T21:06:54Z) - Neuroevolution is a Competitive Alternative to Reinforcement Learning
for Skill Discovery [12.586875201983778]
Deep Reinforcement Learning (RL) has emerged as a powerful paradigm for training neural policies to solve complex control tasks.
We show that Quality Diversity (QD) methods are a competitive alternative to information-theory-augmented RL for skill discovery.
arXiv Detail & Related papers (2022-10-06T11:06:39Z) - Latent Plans for Task-Agnostic Offline Reinforcement Learning [32.938030244921755]
We propose a novel hierarchical approach to learn task-agnostic long-horizon policies from high-dimensional camera observations.
We show that our formulation enables producing previously unseen combinations of skills to reach temporally extended goals by "stitching" together latent skills.
We even learn one multi-task visuomotor policy for 25 distinct manipulation tasks in the real world which outperforms both imitation learning and offline reinforcement learning techniques.
arXiv Detail & Related papers (2022-09-19T12:27:15Z) - Self-Supervised Graph Neural Network for Multi-Source Domain Adaptation [51.21190751266442]
Domain adaptation (DA) tries to tackle the scenarios when the test data does not fully follow the same distribution of the training data.
By learning from large-scale unlabeled samples, self-supervised learning has now become a new trend in deep learning.
We propose a novel textbfSelf-textbfSupervised textbfGraph Neural Network (SSG) to enable more effective inter-task information exchange and knowledge sharing.
arXiv Detail & Related papers (2022-04-08T03:37:56Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Learning Transferable Motor Skills with Hierarchical Latent Mixture
Policies [37.09286945259353]
We propose an approach to learn abstract motor skills from data using a hierarchical mixture latent variable model.
We demonstrate in manipulation domains that the method can effectively cluster offline data into distinct, executable behaviours.
arXiv Detail & Related papers (2021-12-09T17:37:14Z) - Knowledge Transfer in Multi-Task Deep Reinforcement Learning for
Continuous Control [65.00425082663146]
We present a Knowledge Transfer based Multi-task Deep Reinforcement Learning framework (KTM-DRL) for continuous control.
In KTM-DRL, the multi-task agent first leverages an offline knowledge transfer algorithm to quickly learn a control policy from the experience of task-specific teachers.
The experimental results well justify the effectiveness of KTM-DRL and its knowledge transfer and online learning algorithms, as well as its superiority over the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-10-15T03:26:47Z) - A Neural Dirichlet Process Mixture Model for Task-Free Continual
Learning [48.87397222244402]
We propose an expansion-based approach for task-free continual learning.
Our model successfully performs task-free continual learning for both discriminative and generative tasks.
arXiv Detail & Related papers (2020-01-03T02:07:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.