Cloud-based Federated Learning Framework for MRI Segmentation
- URL: http://arxiv.org/abs/2403.00254v1
- Date: Fri, 1 Mar 2024 03:39:17 GMT
- Title: Cloud-based Federated Learning Framework for MRI Segmentation
- Authors: Rukesh Prajapati and Amr S. El-Wakeel
- Abstract summary: This paper proposes a novel framework tailored for brain tissue segmentation in rural healthcare facilities.
The framework employs a deep reinforcement learning environment in tandem with a refinement model (RM) deployed locally at rural healthcare sites.
We demonstrate the efficacy of our approach by training the network with a limited data set and observing a substantial performance enhancement.
- Score: 0.10878040851637999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In contemporary rural healthcare settings, the principal challenge in
diagnosing brain images is the scarcity of available data, given that most of
the existing deep learning models demand extensive training data to optimize
their performance, necessitating centralized processing methods that
potentially compromise data privacy. This paper proposes a novel framework
tailored for brain tissue segmentation in rural healthcare facilities. The
framework employs a deep reinforcement learning (DRL) environment in tandem
with a refinement model (RM) deployed locally at rural healthcare sites. The
proposed DRL model has a reduced parameter count and practicality for
implementation across distributed rural sites. To uphold data privacy and
enhance model generalization without transgressing privacy constraints, we
employ federated learning (FL) for cooperative model training. We demonstrate
the efficacy of our approach by training the network with a limited data set
and observing a substantial performance enhancement, mitigating inaccuracies
and irregularities in segmentation across diverse sites. Remarkably, the DRL
model attains an accuracy of up to 80%, surpassing the capabilities of
conventional convolutional neural networks when confronted with data
insufficiency. Incorporating our RM results in an additional accuracy
improvement of at least 10%, while FL contributes to a further accuracy
enhancement of up to 5%. Collectively, the framework achieves an average 92%
accuracy rate within rural healthcare settings characterized by data
constraints.
Related papers
- Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis.
This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis.
arXiv Detail & Related papers (2024-04-15T09:07:19Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
This paper introduces a novel relation-based knowledge framework by seamlessly combining adaptive affinity-based and kernel-based distillation.
To validate our innovative approach, we conducted experiments on publicly available multi-source prostate MRI data.
arXiv Detail & Related papers (2024-04-03T13:35:51Z) - Empowering Healthcare through Privacy-Preserving MRI Analysis [3.6394715554048234]
We introduce the Ensemble-Based Federated Learning (EBFL) Framework.
EBFL framework deviates from the conventional approach by emphasizing model features over sharing sensitive patient data.
We have achieved remarkable precision in the classification of brain tumors, including glioma, meningioma, pituitary, and non-tumor instances.
arXiv Detail & Related papers (2024-03-14T19:51:18Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Learning Federated Visual Prompt in Null Space for MRI Reconstruction [83.71117888610547]
We propose a new algorithm, FedPR, to learn federated visual prompts in the null space of global prompt for MRI reconstruction.
FedPR significantly outperforms state-of-the-art FL algorithms with 6% of communication costs when given the limited amount of local training data.
arXiv Detail & Related papers (2023-03-28T17:46:16Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
We present a robust and label-efficient self-supervised FL framework for medical image analysis.
Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline.
We show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios.
arXiv Detail & Related papers (2022-05-17T18:33:43Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
To train a high-quality deep learning model, the aggregation of a significant amount of patient information is required.
Due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions.
Federated learning allows for population-level models to be trained without centralizing entities' data.
arXiv Detail & Related papers (2020-01-16T04:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.