Adaptive Restructuring of Merkle and Verkle Trees for Enhanced Blockchain Scalability
- URL: http://arxiv.org/abs/2403.00406v1
- Date: Fri, 1 Mar 2024 09:52:50 GMT
- Title: Adaptive Restructuring of Merkle and Verkle Trees for Enhanced Blockchain Scalability
- Authors: Oleksandr Kuznetsov, Dzianis Kanonik, Alex Rusnak, Anton Yezhov, Oleksandr Domin,
- Abstract summary: We propose an adaptive restructuring of Merkle and Verkle trees, fundamental components of blockchain architecture.
Unlike traditional static tree structures, our adaptive model dynamically adjusts the configuration of these trees based on usage patterns.
This study's implications extend beyond theoretical advancements, offering a scalable, secure, and efficient method for blockchain data verification.
- Score: 28.727306785987537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The scalability of blockchain technology remains a pivotal challenge, impeding its widespread adoption across various sectors. This study introduces an innovative approach to address this challenge by proposing the adaptive restructuring of Merkle and Verkle trees, fundamental components of blockchain architecture responsible for ensuring data integrity and facilitating efficient verification processes. Unlike traditional static tree structures, our adaptive model dynamically adjusts the configuration of these trees based on usage patterns, significantly reducing the average path length required for verification and, consequently, the computational overhead associated with these processes. Through a comprehensive conceptual framework, we delineate the methodology for adaptive restructuring, encompassing both binary and non-binary tree configurations. This framework is validated through a series of detailed examples, demonstrating the practical feasibility and the efficiency gains achievable with our approach. Moreover, we present a comparative analysis with existing scalability solutions, highlighting the unique advantages of adaptive restructuring in terms of simplicity, security, and efficiency enhancement without introducing additional complexities or dependencies. This study's implications extend beyond theoretical advancements, offering a scalable, secure, and efficient method for blockchain data verification that could facilitate broader adoption of blockchain technology in finance, supply chain management, and beyond. As the blockchain ecosystem continues to evolve, the principles and methodologies outlined herein are poised to contribute significantly to its growth and maturity.
Related papers
- AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation [48.82264764771652]
We introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks.
AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation.
We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance.
arXiv Detail & Related papers (2024-11-07T18:43:17Z) - Efficient Zero-Knowledge Proofs for Set Membership in Blockchain-Based Sensor Networks: A Novel OR-Aggregation Approach [20.821562115822182]
This paper introduces a novel OR-aggregation approach for zero-knowledge set membership proofs.
We provide a comprehensive theoretical foundation, detailed protocol specification, and rigorous security analysis.
Results show significant improvements in proof size, generation time, and verification efficiency.
arXiv Detail & Related papers (2024-10-11T18:16:34Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - BlockFUL: Enabling Unlearning in Blockchained Federated Learning [26.47424619448623]
Unlearning in Federated Learning (FL) presents significant challenges, as models grow and evolve with complex inheritance relationships.
In this paper, we introduce a novel framework with a dual-chain structure comprising a live chain and an archive chain for enabling unlearning capabilities withined FL.
Two new unlearning paradigms, i.e., parallel and sequential paradigms, can be effectively implemented through gradient-ascent-based and re-training-based unlearning methods.
Our experiments validate that these methods effectively reduce data dependency and operational overhead, thereby boosting the overall performance of unlearning inherited models within BlockFUL.
arXiv Detail & Related papers (2024-02-26T04:31:53Z) - Enhanced Security and Efficiency in Blockchain with Aggregated Zero-Knowledge Proof Mechanisms [15.034624246970154]
Current approaches to data verification in blockchain systems face challenges in terms of efficiency and computational overhead.
This study proposes an innovative aggregation scheme for Zero-Knowledge Proofs within the structure of Merkle Trees.
We develop a system that significantly reduces the size of the proof and the computational resources needed for its generation and verification.
arXiv Detail & Related papers (2024-02-06T09:26:46Z) - RIFormer: Keep Your Vision Backbone Effective While Removing Token Mixer [95.71132572688143]
This paper studies how to keep a vision backbone effective while removing token mixers in its basic building blocks.
Token mixers, as self-attention for vision transformers (ViTs), are intended to perform information communication between different spatial tokens but suffer from considerable computational cost and latency.
arXiv Detail & Related papers (2023-04-12T07:34:13Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Secure and Efficient Federated Learning Through Layering and Sharding
Blockchain [15.197940168865271]
This paper proposes ChainFL, a novel two-layer blockchain-driven Federated Learning system.
It splits the Internet network into multiple shards within the subchain layer, effectively reducing the scale of information exchange.
It also employs a Direct Acyclic Graph (DAG)-based mainchain as the mainchain layer, enabling parallel and asynchronous cross-shard validation.
arXiv Detail & Related papers (2021-04-27T12:19:07Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.