Machine Learning Training Optimization using the Barycentric Correction
Procedure
- URL: http://arxiv.org/abs/2403.00542v1
- Date: Fri, 1 Mar 2024 13:56:36 GMT
- Title: Machine Learning Training Optimization using the Barycentric Correction
Procedure
- Authors: Sofia Ramos-Pulido, Neil Hernandez-Gress and Hector G.
Ceballos-Cancino (Tecnologico de Monterrey, Mexico)
- Abstract summary: This study proposes combining machine learning algorithms with an efficient methodology known as the barycentric correction procedure (BCP)
It was found that this combination provides significant benefits related to time in synthetic and real data without losing accuracy when the number of instances and dimensions increases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) algorithms are predictively competitive algorithms with
many human-impact applications. However, the issue of long execution time
remains unsolved in the literature for high-dimensional spaces. This study
proposes combining ML algorithms with an efficient methodology known as the
barycentric correction procedure (BCP) to address this issue. This study uses
synthetic data and an educational dataset from a private university to show the
benefits of the proposed method. It was found that this combination provides
significant benefits related to time in synthetic and real data without losing
accuracy when the number of instances and dimensions increases. Additionally,
for high-dimensional spaces, it was proved that BCP and linear support vector
classification (LinearSVC), after an estimated feature map for the gaussian
radial basis function (RBF) kernel, were unfeasible in terms of computational
time and accuracy.
Related papers
- Online Nonparametric Supervised Learning for Massive Data [0.0]
We develop a fast algorithm adapted to the real-time calculation of the nonparametric classifier in massive as well as streaming data frameworks.
The proposed methods are evaluated and compared to some commonly used machine learning algorithms for real-time fetal well-being monitoring.
arXiv Detail & Related papers (2024-05-29T20:04:23Z) - Randomized Dimension Reduction with Statistical Guarantees [0.27195102129095]
This thesis explores some of such algorithms for fast execution and efficient data utilization.
We focus on learning algorithms with various incorporations of data augmentation that improve generalization and distributional provably.
Specifically, Chapter 4 presents a sample complexity analysis for data augmentation consistency regularization.
arXiv Detail & Related papers (2023-10-03T02:01:39Z) - Efficient distributed representations with linear-time attention scores normalization [3.8673630752805437]
We propose a linear-time approximation of the attention score normalization constants for embedding vectors with bounded norms.
The accuracy of our estimation formula surpasses competing kernel methods by even orders of magnitude.
The proposed algorithm is highly interpretable and easily adapted to an arbitrary embedding problem.
arXiv Detail & Related papers (2023-03-30T15:48:26Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
The area under the ROC curve (AUC) is one of the most widely used performance measures for classification models in machine learning.
We develop an efficient approximated gradient descent method based on recent practical envelope smoothing technique.
Our proposed algorithm can also be used to minimize the sum of some ranked range loss, which also lacks efficient solvers.
arXiv Detail & Related papers (2022-03-03T03:46:18Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
Kolmogorov model (KM) is an interpretable and predictable representation approach to learning the underlying probabilistic structure of a set of random variables.
We propose a computationally scalable KM learning algorithm, based on the regularized dual optimization combined with enhanced gradient descent (GD) method.
It is shown that the accuracy of logical relation mining for interpretability by using the proposed KM learning algorithm exceeds $80%$.
arXiv Detail & Related papers (2021-07-11T10:33:02Z) - Covariance-Free Sparse Bayesian Learning [62.24008859844098]
We introduce a new SBL inference algorithm that avoids explicit inversions of the covariance matrix.
Our method can be up to thousands of times faster than existing baselines.
We showcase how our new algorithm enables SBL to tractably tackle high-dimensional signal recovery problems.
arXiv Detail & Related papers (2021-05-21T16:20:07Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.