Large Language Models are Learnable Planners for Long-Term Recommendation
- URL: http://arxiv.org/abs/2403.00843v2
- Date: Fri, 26 Apr 2024 07:41:07 GMT
- Title: Large Language Models are Learnable Planners for Long-Term Recommendation
- Authors: Wentao Shi, Xiangnan He, Yang Zhang, Chongming Gao, Xinyue Li, Jizhi Zhang, Qifan Wang, Fuli Feng,
- Abstract summary: Planning for both immediate and long-term benefits becomes increasingly important in recommendation.
Existing methods apply Reinforcement Learning to learn planning capacity by maximizing cumulative reward for long-term recommendation.
We propose to leverage the remarkable planning capabilities over sparse data of Large Language Models for long-term recommendation.
- Score: 59.167795967630305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planning for both immediate and long-term benefits becomes increasingly important in recommendation. Existing methods apply Reinforcement Learning (RL) to learn planning capacity by maximizing cumulative reward for long-term recommendation. However, the scarcity of recommendation data presents challenges such as instability and susceptibility to overfitting when training RL models from scratch, resulting in sub-optimal performance. In this light, we propose to leverage the remarkable planning capabilities over sparse data of Large Language Models (LLMs) for long-term recommendation. The key to achieving the target lies in formulating a guidance plan following principles of enhancing long-term engagement and grounding the plan to effective and executable actions in a personalized manner. To this end, we propose a Bi-level Learnable LLM Planner framework, which consists of a set of LLM instances and breaks down the learning process into macro-learning and micro-learning to learn macro-level guidance and micro-level personalized recommendation policies, respectively. Extensive experiments validate that the framework facilitates the planning ability of LLMs for long-term recommendation. Our code and data can be found at https://github.com/jizhi-zhang/BiLLP.
Related papers
- Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge Graphs [59.76268575344119]
We introduce a novel framework for enhancing large language models' (LLMs) planning capabilities by using planning data derived from knowledge graphs (KGs)
LLMs fine-tuned with KG data have improved planning capabilities, better equipping them to handle complex QA tasks that involve retrieval.
arXiv Detail & Related papers (2024-06-20T13:07:38Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
Instruction tuning aims to align large language models with open-domain instructions and human-preferred responses.
We introduce Task-Aware Curriculum Planning for Instruction Refinement (TAPIR) to select instructions that are difficult for a student LLM to follow.
To balance the student's capabilities, task distributions in training sets are adjusted with responses automatically refined according to their corresponding tasks.
arXiv Detail & Related papers (2024-05-22T08:38:26Z) - RecMind: Large Language Model Powered Agent For Recommendation [16.710558148184205]
RecMind is an autonomous recommender agent with careful planning for zero-shot personalized recommendations.
Our experiment shows that RecMind outperforms existing zero/few-shot LLM-based recommendation baseline methods in various tasks.
arXiv Detail & Related papers (2023-08-28T04:31:04Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
The study seeks to shed light on the capabilities of LLMs in solving complex planning problems.
It provides insights into the most effective approaches for using LLMs in this context.
arXiv Detail & Related papers (2023-05-25T15:21:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.