Automatic Speech Recognition using Advanced Deep Learning Approaches: A survey
- URL: http://arxiv.org/abs/2403.01255v2
- Date: Thu, 18 Apr 2024 17:29:29 GMT
- Title: Automatic Speech Recognition using Advanced Deep Learning Approaches: A survey
- Authors: Hamza Kheddar, Mustapha Hemis, Yassine Himeur,
- Abstract summary: Recent advancements in deep learning (DL) have posed a significant challenge for automatic speech recognition (ASR)
ASR relies on extensive training datasets, including confidential ones, and demands substantial computational and storage resources.
Advanced DL techniques like deep transfer learning (DTL), federated learning (FL), and reinforcement learning (RL) address these issues.
- Score: 2.716339075963185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in deep learning (DL) have posed a significant challenge for automatic speech recognition (ASR). ASR relies on extensive training datasets, including confidential ones, and demands substantial computational and storage resources. Enabling adaptive systems improves ASR performance in dynamic environments. DL techniques assume training and testing data originate from the same domain, which is not always true. Advanced DL techniques like deep transfer learning (DTL), federated learning (FL), and reinforcement learning (RL) address these issues. DTL allows high-performance models using small yet related datasets, FL enables training on confidential data without dataset possession, and RL optimizes decision-making in dynamic environments, reducing computation costs. This survey offers a comprehensive review of DTL, FL, and RL-based ASR frameworks, aiming to provide insights into the latest developments and aid researchers and professionals in understanding the current challenges. Additionally, transformers, which are advanced DL techniques heavily used in proposed ASR frameworks, are considered in this survey for their ability to capture extensive dependencies in the input ASR sequence. The paper starts by presenting the background of DTL, FL, RL, and Transformers and then adopts a well-designed taxonomy to outline the state-of-the-art approaches. Subsequently, a critical analysis is conducted to identify the strengths and weaknesses of each framework. Additionally, a comparative study is presented to highlight the existing challenges, paving the way for future research opportunities.
Related papers
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.
Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Leveraging Optimal Transport for Enhanced Offline Reinforcement Learning
in Surgical Robotic Environments [4.2569494803130565]
We introduce an innovative algorithm designed to assign rewards to offline trajectories, using a small number of high-quality expert demonstrations.
This approach circumvents the need for handcrafted rewards, unlocking the potential to harness vast datasets for policy learning.
arXiv Detail & Related papers (2023-10-13T03:39:15Z) - Enabling Resource-efficient AIoT System with Cross-level Optimization: A
survey [20.360136850102833]
This survey aims to provide a broader optimization space for more free resource-performance tradeoffs.
By consolidating problems and techniques scattered over diverse levels, we aim to help readers understand their connections and stimulate further discussions.
arXiv Detail & Related papers (2023-09-27T08:04:24Z) - Deep Transfer Learning for Automatic Speech Recognition: Towards Better
Generalization [3.6393183544320236]
Speech recognition has become an important challenge when using deep learning (DL)
It requires large-scale training datasets and high computational and storage resources.
Deep transfer learning (DTL) has been introduced to overcome these issues.
arXiv Detail & Related papers (2023-04-27T21:08:05Z) - Gradient Imitation Reinforcement Learning for General Low-Resource
Information Extraction [80.64518530825801]
We develop a Gradient Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data.
We also leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings.
arXiv Detail & Related papers (2022-11-11T05:37:19Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.