Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making
- URL: http://arxiv.org/abs/2403.01791v1
- Date: Mon, 4 Mar 2024 07:32:28 GMT
- Title: Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making
- Authors: Shuai Ma, Chenyi Zhang, Xinru Wang, Xiaojuan Ma, Ming Yin
- Abstract summary: We examine three AI roles: Recommender, Analyzer, and Devil's Advocate.
Our results show each role's distinct strengths and limitations in task performance, reliance appropriateness, and user experience.
These insights offer valuable implications for designing AI assistants with adaptive functional roles according to different situations.
- Score: 48.179458030691286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is increasingly employed in various
decision-making tasks, typically as a Recommender, providing recommendations
that the AI deems correct. However, recent studies suggest this may diminish
human analytical thinking and lead to humans' inappropriate reliance on AI,
impairing the synergy in human-AI teams. In contrast, human advisors in group
decision-making perform various roles, such as analyzing alternative options or
criticizing decision-makers to encourage their critical thinking. This
diversity of roles has not yet been empirically explored in AI assistance. In
this paper, we examine three AI roles: Recommender, Analyzer, and Devil's
Advocate, and evaluate their effects across two AI performance levels. Our
results show each role's distinct strengths and limitations in task
performance, reliance appropriateness, and user experience. Notably, the
Recommender role is not always the most effective, especially if the AI
performance level is low, the Analyzer role may be preferable. These insights
offer valuable implications for designing AI assistants with adaptive
functional roles according to different situations.
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
Vision for optimal human-AI collaboration requires 'appropriate reliance' of humans on AI systems.
In practice, the performance disparity of machine learning models on out-of-distribution data makes dataset-specific performance feedback unreliable.
arXiv Detail & Related papers (2024-09-22T09:43:27Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Towards Effective Human-AI Decision-Making: The Role of Human Learning
in Appropriate Reliance on AI Advice [3.595471754135419]
We show the relationship between learning and appropriate reliance in an experiment with 100 participants.
This work provides fundamental concepts for analyzing reliance and derives implications for the effective design of human-AI decision-making.
arXiv Detail & Related papers (2023-10-03T14:51:53Z) - Learning to Make Adherence-Aware Advice [8.419688203654948]
This paper presents a sequential decision-making model that takes into account the human's adherence level.
We provide learning algorithms that learn the optimal advice policy and make advice only at critical time stamps.
arXiv Detail & Related papers (2023-10-01T23:15:55Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
This paper addresses whether the Dunning-Kruger Effect (DKE) can hinder appropriate reliance on AI systems.
DKE is a metacognitive bias due to which less-competent individuals overestimate their own skill and performance.
We found that participants who overestimate their performance tend to exhibit under-reliance on AI systems.
arXiv Detail & Related papers (2023-01-25T14:26:10Z) - Advancing Human-AI Complementarity: The Impact of User Expertise and
Algorithmic Tuning on Joint Decision Making [10.890854857970488]
Many factors can impact success of Human-AI teams, including a user's domain expertise, mental models of an AI system, trust in recommendations, and more.
Our study examined user performance in a non-trivial blood vessel labeling task where participants indicated whether a given blood vessel was flowing or stalled.
Our results show that while recommendations from an AI-Assistant can aid user decision making, factors such as users' baseline performance relative to the AI and complementary tuning of AI error types significantly impact overall team performance.
arXiv Detail & Related papers (2022-08-16T21:39:58Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.