AllSpark: Reborn Labeled Features from Unlabeled in Transformer for Semi-Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2403.01818v3
- Date: Thu, 14 Mar 2024 15:39:51 GMT
- Title: AllSpark: Reborn Labeled Features from Unlabeled in Transformer for Semi-Supervised Semantic Segmentation
- Authors: Haonan Wang, Qixiang Zhang, Yi Li, Xiaomeng Li,
- Abstract summary: Semi-supervised semantic segmentation (SSSS) has been proposed to alleviate the burden of time-consuming pixel-level manual labeling.
We present AllSpark, which reborns the labeled features from unlabeled ones with the channel-wise cross-attention mechanism.
- Score: 16.891690994626934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semi-supervised semantic segmentation (SSSS) has been proposed to alleviate the burden of time-consuming pixel-level manual labeling, which leverages limited labeled data along with larger amounts of unlabeled data. Current state-of-the-art methods train the labeled data with ground truths and unlabeled data with pseudo labels. However, the two training flows are separate, which allows labeled data to dominate the training process, resulting in low-quality pseudo labels and, consequently, sub-optimal results. To alleviate this issue, we present AllSpark, which reborns the labeled features from unlabeled ones with the channel-wise cross-attention mechanism. We further introduce a Semantic Memory along with a Channel Semantic Grouping strategy to ensure that unlabeled features adequately represent labeled features. The AllSpark shed new light on the architecture level designs of SSSS rather than framework level, which avoids increasingly complicated training pipeline designs. It can also be regarded as a flexible bottleneck module that can be seamlessly integrated into a general transformer-based segmentation model. The proposed AllSpark outperforms existing methods across all evaluation protocols on Pascal, Cityscapes and COCO benchmarks without bells-and-whistles. Code and model weights are available at: https://github.com/xmed-lab/AllSpark.
Related papers
- Multi-Level Label Correction by Distilling Proximate Patterns for Semi-supervised Semantic Segmentation [16.75278876840937]
We propose an algorithm called Multi-Level Label Correction (MLLC) to rectify erroneous pseudo-labels.
MLLC can significantly improve supervised baselines and outperforms state-of-the-art approaches in different scenarios on Cityscapes and PASCAL VOC 2012 datasets.
arXiv Detail & Related papers (2024-04-02T16:06:20Z) - HPL-ESS: Hybrid Pseudo-Labeling for Unsupervised Event-based Semantic Segmentation [47.271784693700845]
We propose a novel hybrid pseudo-labeling framework for unsupervised event-based semantic segmentation, HPL-ESS, to alleviate the influence of noisy pseudo labels.
Our proposed method outperforms existing state-of-the-art methods by a large margin on the DSEC-Semantic dataset.
arXiv Detail & Related papers (2024-03-25T14:02:33Z) - Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning [8.387189407144403]
Partial label learning (PLL) is a weakly-supervised learning paradigm where each training instance is paired with a set of candidate labels (partial label)
NPLL relaxes this constraint by allowing some partial labels to not contain the true label, enhancing the practicality of the problem.
We present a minimalistic framework that initially assigns pseudo-labels to images by exploiting the noisy partial labels through a weighted nearest neighbour algorithm.
arXiv Detail & Related papers (2024-02-07T13:32:47Z) - Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
In many real-world tasks, the concerned objects can be represented as a multi-instance bag associated with a candidate label set.
Existing MIPL approach follows the instance-space paradigm by assigning augmented candidate label sets of bags to each instance and aggregating bag-level labels from instance-level labels.
We propose an intuitive algorithm named DEMIPL, i.e., Disambiguated attention Embedding for Multi-Instance Partial-Label learning.
arXiv Detail & Related papers (2023-05-26T13:25:17Z) - Semantic-Aware Representation Blending for Multi-Label Image Recognition
with Partial Labels [86.17081952197788]
We propose to blend category-specific representation across different images to transfer information of known labels to complement unknown labels.
Experiments on the MS-COCO, Visual Genome, Pascal VOC 2007 datasets show that the proposed SARB framework obtains superior performance over current leading competitors.
arXiv Detail & Related papers (2022-03-04T07:56:16Z) - Structured Semantic Transfer for Multi-Label Recognition with Partial
Labels [85.6967666661044]
We propose a structured semantic transfer (SST) framework that enables training multi-label recognition models with partial labels.
The framework consists of two complementary transfer modules that explore within-image and cross-image semantic correlations.
Experiments on the Microsoft COCO, Visual Genome and Pascal VOC datasets show that the proposed SST framework obtains superior performance over current state-of-the-art algorithms.
arXiv Detail & Related papers (2021-12-21T02:15:01Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.