RT-H: Action Hierarchies Using Language
- URL: http://arxiv.org/abs/2403.01823v2
- Date: Sat, 1 Jun 2024 01:54:54 GMT
- Title: RT-H: Action Hierarchies Using Language
- Authors: Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson, Yevgen Chebotar, Debidatta Dwibedi, Dorsa Sadigh,
- Abstract summary: Recent works in robot imitation learning use language-conditioned policies that predict actions given visual observations and the high-level task specified in language.
We show that RT-H builds an action hierarchy using language motions, and conditioned on this and the high-level task, it predicts actions, using visual context at all stages.
We show that these policies not only allow for responding to language interventions, but can also learn from such interventions and outperform methods that learn from teleoperated interventions.
- Score: 36.873648277512864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language provides a way to break down complex concepts into digestible pieces. Recent works in robot imitation learning use language-conditioned policies that predict actions given visual observations and the high-level task specified in language. These methods leverage the structure of natural language to share data between semantically similar tasks (e.g., "pick coke can" and "pick an apple") in multi-task datasets. However, as tasks become more semantically diverse (e.g., "pick coke can" and "pour cup"), sharing data between tasks becomes harder, so learning to map high-level tasks to actions requires much more demonstration data. To bridge tasks and actions, our insight is to teach the robot the language of actions, describing low-level motions with more fine-grained phrases like "move arm forward". Predicting these language motions as an intermediate step between tasks and actions forces the policy to learn the shared structure of low-level motions across seemingly disparate tasks. Furthermore, a policy that is conditioned on language motions can easily be corrected during execution through human-specified language motions. This enables a new paradigm for flexible policies that can learn from human intervention in language. Our method RT-H builds an action hierarchy using language motions: it first learns to predict language motions, and conditioned on this and the high-level task, it predicts actions, using visual context at all stages. We show that RT-H leverages this language-action hierarchy to learn policies that are more robust and flexible by effectively tapping into multi-task datasets. We show that these policies not only allow for responding to language interventions, but can also learn from such interventions and outperform methods that learn from teleoperated interventions. Our website and videos are found at https://rt-hierarchy.github.io.
Related papers
- Goal Representations for Instruction Following: A Semi-Supervised
Language Interface to Control [58.06223121654735]
We show a method that taps into joint image- and goal- conditioned policies with language using only a small amount of language data.
Our method achieves robust performance in the real world by learning an embedding from the labeled data that aligns language not to the goal image.
We show instruction following across a variety of manipulation tasks in different scenes, with generalization to language instructions outside of the labeled data.
arXiv Detail & Related papers (2023-06-30T20:09:39Z) - ARNOLD: A Benchmark for Language-Grounded Task Learning With Continuous
States in Realistic 3D Scenes [72.83187997344406]
ARNOLD is a benchmark that evaluates language-grounded task learning with continuous states in realistic 3D scenes.
ARNOLD is comprised of 8 language-conditioned tasks that involve understanding object states and learning policies for continuous goals.
arXiv Detail & Related papers (2023-04-09T21:42:57Z) - Grounding Language with Visual Affordances over Unstructured Data [26.92329260907805]
We propose a novel approach to efficiently learn language-conditioned robot skills from unstructured, offline and reset-free data.
We exploit a self-supervised visuo-lingual affordance model, which requires as little as 1% of the total data with language.
We find that our method is capable of completing long-horizon, multi-tier tasks in the real world, while requiring an order of magnitude less data than previous approaches.
arXiv Detail & Related papers (2022-10-04T21:16:48Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
Large language models can encode a wealth of semantic knowledge about the world.
Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language.
We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions.
arXiv Detail & Related papers (2022-04-04T17:57:11Z) - Language Models as Zero-Shot Planners: Extracting Actionable Knowledge
for Embodied Agents [111.33545170562337]
We investigate the possibility of grounding high-level tasks, expressed in natural language, to a chosen set of actionable steps.
We find that if pre-trained LMs are large enough and prompted appropriately, they can effectively decompose high-level tasks into low-level plans.
We propose a procedure that conditions on existing demonstrations and semantically translates the plans to admissible actions.
arXiv Detail & Related papers (2022-01-18T18:59:45Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z) - Ask Your Humans: Using Human Instructions to Improve Generalization in
Reinforcement Learning [32.82030512053361]
We propose the use of step-by-step human demonstrations in the form of natural language instructions and action trajectories.
We find that human demonstrations help solve the most complex tasks.
We also find that incorporating natural language allows the model to generalize to unseen tasks in a zero-shot setting.
arXiv Detail & Related papers (2020-11-01T14:39:46Z) - Language Conditioned Imitation Learning over Unstructured Data [9.69886122332044]
We present a method for incorporating free-form natural language conditioning into imitation learning.
Our approach learns perception from pixels, natural language understanding, and multitask continuous control end-to-end as a single neural network.
We show this dramatically improves language conditioned performance, while reducing the cost of language annotation to less than 1% of total data.
arXiv Detail & Related papers (2020-05-15T17:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.