Randomized Approach to Matrix Completion: Applications in Collaborative Filtering and Image Inpainting
- URL: http://arxiv.org/abs/2403.01919v5
- Date: Thu, 09 Jan 2025 19:42:52 GMT
- Title: Randomized Approach to Matrix Completion: Applications in Collaborative Filtering and Image Inpainting
- Authors: Antonina Krajewska, Ewa Niewiadomska-Szynkiewicz,
- Abstract summary: Columns Selected Matrix Completion (CSMC) method combines Column Subset Selection and Low-Rank Matrix Completion.<n>We introduce two algorithms to implement CSMC, each tailored to problems of different sizes.<n>CSMC provides solutions of the same quality as state-of-the-art matrix completion algorithms based on convex optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel method for matrix completion, specifically designed for matrices where one dimension significantly exceeds the other. Our Columns Selected Matrix Completion (CSMC) method combines Column Subset Selection and Low-Rank Matrix Completion to efficiently reconstruct incomplete datasets. In each step, CSMC solves a convex optimization problem. We introduce two algorithms to implement CSMC, each tailored to problems of different sizes. A formal analysis is provided, outlining the necessary assumptions and the probability of obtaining a correct solution. To assess the impact of matrix size, rank, and the ratio of missing entries on solution quality and computation time, we conducted experiments on synthetic data. The method was also applied to two real-world problems: recommendation systems and image inpainting. Our results show that CSMC provides solutions of the same quality as state-of-the-art matrix completion algorithms based on convex optimization, while achieving significant reductions in computational runtime.
Related papers
- Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion [14.542166904874147]
Similarity Completion Matrix serves as a fundamental tool at the core of numerous machinelearning tasks.
To address this issue, Similarity Matrix Theoretical (SMC) methods have been proposed, but they suffer complexity.
We present two novel, scalable, and effective algorithms, which investigate the PSD property to guide the estimation process and incorporate non low-rank regularizer to ensure the low-rank solution.
arXiv Detail & Related papers (2024-09-29T04:27:23Z) - Randomized Algorithms for Symmetric Nonnegative Matrix Factorization [1.991322361612643]
Symmetric Nonnegative Matrix Factorization (SymNMF) is a technique in data analysis and machine learning.
We develop two randomized algorithms for its computation.
We show that our methods approximately maintain solution quality and achieve significant speed ups for both large dense and large sparse problems.
arXiv Detail & Related papers (2024-02-13T00:02:05Z) - Orthogonally weighted $\ell_{2,1}$ regularization for rank-aware joint
sparse recovery: algorithm and analysis [7.7001263654719985]
We propose and analyze an efficient algorithm for solving the joint sparse recovery problem using a new regularization-based method, named $ell_2,1$ ($mathitowell_2,1$)
This method has applications in feature extraction, matrix column selection, and dictionary learning, and it is distinct from commonly used $ell_2,1$ regularization.
We provide a proof of the method's rank-awareness, establish the existence of solutions to the proposed optimization problem, and develop an efficient algorithm for solving it, whose convergence is analyzed.
arXiv Detail & Related papers (2023-11-21T01:52:15Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
We design algorithms for Robust Component Analysis (A)
It consists in decomposing a matrix into the sum of a low Principaled matrix and a sparse Principaled matrix.
arXiv Detail & Related papers (2023-07-12T03:48:26Z) - Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and
Eigenvector Disjunctions [6.537257913467247]
Low-rank matrix completion consists of a matrix of minimal complexity that recovers a given set of observations as accurately as possible.
New convex relaxations decrease the optimal by magnitude compared to existing methods.
arXiv Detail & Related papers (2023-05-20T22:04:34Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Matrix Reordering for Noisy Disordered Matrices: Optimality and
Computationally Efficient Algorithms [9.245687221460654]
Motivated by applications in single-cell biology and metagenomics, we investigate the problem of matrixing based on a noisy monotone Toeplitz matrix model.
We establish fundamental statistical limit for this problem in a decision-theoretic framework and demonstrate that a constrained least squares rate.
To address this, we propose a novel-time adaptive sorting algorithm with guaranteed performance improvement.
arXiv Detail & Related papers (2022-01-17T14:53:52Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Boolean Matrix Factorization via Nonnegative Auxiliary Optimization [0.5459797813771498]
Instead of solving the BMF problem directly, this approach solves a nonnegative optimization problem with the constraint over an auxiliary matrix.
We provide the proofs for the equivalencies of the two solution spaces under the existence of an exact solution.
Experiments on synthetic and real datasets are conducted to show the effectiveness and complexity of the algorithm.
arXiv Detail & Related papers (2021-06-08T21:55:49Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank
Constraints [3.179831861897336]
We provide a framework for solving low-rank optimization problems to certifiable optimality.
Our framework also provides near-optimal solutions through rounding and local search techniques.
arXiv Detail & Related papers (2020-09-22T08:59:06Z) - PCA Reduced Gaussian Mixture Models with Applications in Superresolution [1.885698488789676]
This paper provides a twofold contribution to the topic.
First, we propose a Gaussian Mixture Model in conjunction with a reduction of the dimensionality of the data in each component of the model.
Second, we apply our PCA-GMM for the superresolution of 2D and 3D material images based on the approach of Sandeep and Jacob.
arXiv Detail & Related papers (2020-09-16T07:33:56Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.