UB-FineNet: Urban Building Fine-grained Classification Network for
Open-access Satellite Images
- URL: http://arxiv.org/abs/2403.02132v1
- Date: Mon, 4 Mar 2024 15:40:31 GMT
- Title: UB-FineNet: Urban Building Fine-grained Classification Network for
Open-access Satellite Images
- Authors: Zhiyi He, Wei Yao, Jie Shao, Puzuo Wang
- Abstract summary: We propose a deep network approach to fine-grained classification of urban buildings using open-access satellite images.
A new fine-grained classification network with Category Information Balancing Module (CIBM) and Contrastive Supervision (CS) technique is proposed to mitigate the problem of class imbalance.
Experiments on Hong Kong data set with 11 fine building types revealed promising classification results with a mean Top-1 accuracy of 60.45%.
- Score: 7.435848987082052
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fine classification of city-scale buildings from satellite remote sensing
imagery is a crucial research area with significant implications for urban
planning, infrastructure development, and population distribution analysis.
However, the task faces big challenges due to low-resolution overhead images
acquired from high altitude space-borne platforms and the long-tail sample
distribution of fine-grained urban building categories, leading to severe class
imbalance problem. To address these issues, we propose a deep network approach
to fine-grained classification of urban buildings using open-access satellite
images. A Denoising Diffusion Probabilistic Model (DDPM) based super-resolution
method is first introduced to enhance the spatial resolution of satellite
images, which benefits from domain-adaptive knowledge distillation. Then, a new
fine-grained classification network with Category Information Balancing Module
(CIBM) and Contrastive Supervision (CS) technique is proposed to mitigate the
problem of class imbalance and improve the classification robustness and
accuracy. Experiments on Hong Kong data set with 11 fine building types
revealed promising classification results with a mean Top-1 accuracy of
60.45\%, which is on par with street-view image based approaches. Extensive
ablation study shows that CIBM and CS improve Top-1 accuracy by 2.6\% and 3.5\%
compared to the baseline method, respectively. And both modules can be easily
inserted into other classification networks and similar enhancements have been
achieved. Our research contributes to the field of urban analysis by providing
a practical solution for fine classification of buildings in challenging mega
city scenarios solely using open-access satellite images. The proposed method
can serve as a valuable tool for urban planners, aiding in the understanding of
economic, industrial, and population distribution.
Related papers
- Classification of residential and non-residential buildings based on satellite data using deep learning [0.0]
In this paper, we are proposing a novel deep learning approach that combines high-resolution satellite data and vector data to achieve high-performance building classification.
Experimental results on a large-scale dataset demonstrate the effectiveness of our model, achieving an impressive overall F1 -score of 0.9936.
arXiv Detail & Related papers (2024-11-11T11:23:43Z) - Cross Pseudo Supervision Framework for Sparsely Labelled Geospatial Images [0.0]
Land Use Land Cover (LULC) mapping is a vital tool for urban and resource planning.
This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images.
We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data.
arXiv Detail & Related papers (2024-08-05T11:14:23Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
Overhead images can help fill in the gaps where community information is sparse.
Recent advancements in machine learning and computer vision have made it possible to quickly extract features from and detect patterns in image data.
In this work, we explore how well two approaches, a supervised convolutional neural network and semi-supervised clustering can estimate population density, median household income, and educational attainment.
arXiv Detail & Related papers (2023-09-28T19:30:26Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Fine-grained building roof instance segmentation based on domain adapted
pretraining and composite dual-backbone [13.09940764764909]
We propose a framework to fulfill semantic interpretation of individual buildings with high-resolution optical satellite imagery.
Specifically, the leveraged domain adapted pretraining strategy and composite dual-backbone greatly facilitates the discnative feature learning.
Experiment results show that our approach ranks in the first place of the 2023 IEEE GRSS Data Fusion Contest.
arXiv Detail & Related papers (2023-08-10T05:54:57Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Buildings Classification using Very High Resolution Satellite Imagery [0.769672852567215]
We focus on buildings damage assessment (BDA) and buildings type classification (BTC) of residential and non-residential buildings.
We propose a 2-stage deep learning-based approach, where first, buildings' footprints are extracted using a semantic segmentation model.
We validate the proposed approach on two applications showing excellent accuracy and F1-score metrics.
arXiv Detail & Related papers (2021-11-29T16:07:04Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNet is a unified model that can simultaneously segment buildings and assess the damage levels to individual buildings and can be trained end-to-end.
RescueNet is tested on the large scale and diverse xBD dataset and achieves significantly better building segmentation and damage classification performance than previous methods.
arXiv Detail & Related papers (2020-04-15T19:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.