A Tutorial on the Pretrain-Finetune Paradigm for Natural Language Processing
- URL: http://arxiv.org/abs/2403.02504v3
- Date: Fri, 2 Aug 2024 04:44:29 GMT
- Title: A Tutorial on the Pretrain-Finetune Paradigm for Natural Language Processing
- Authors: Yu Wang, Wen Qu,
- Abstract summary: The pretrain-finetune paradigm represents a transformative approach in text analysis and natural language processing.
This tutorial offers a comprehensive introduction to the pretrain-finetune paradigm.
- Score: 2.7038841665524846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given that natural language serves as the primary conduit for expressing thoughts and emotions, text analysis has become a key technique in psychological research. It enables the extraction of valuable insights from natural language, facilitating endeavors like personality traits assessment, mental health monitoring, and sentiment analysis in interpersonal communications. In text analysis, existing studies often resort to either human coding, which is time-consuming, using pre-built dictionaries, which often fails to cover all possible scenarios, or training models from scratch, which requires large amounts of labeled data. In this tutorial, we introduce the pretrain-finetune paradigm. The pretrain-finetune paradigm represents a transformative approach in text analysis and natural language processing. This paradigm distinguishes itself through the use of large pretrained language models, demonstrating remarkable efficiency in finetuning tasks, even with limited training data. This efficiency is especially beneficial for research in social sciences, where the number of annotated samples is often quite limited. Our tutorial offers a comprehensive introduction to the pretrain-finetune paradigm. We first delve into the fundamental concepts of pretraining and finetuning, followed by practical exercises using real-world applications. We demonstrate the application of the paradigm across various tasks, including multi-class classification and regression. Emphasizing its efficacy and user-friendliness, the tutorial aims to encourage broader adoption of this paradigm. To this end, we have provided open access to all our code and datasets. The tutorial is highly beneficial across various psychology disciplines, providing a comprehensive guide to employing text analysis in diverse research settings.
Related papers
- Analysis of the Evolution of Advanced Transformer-Based Language Models:
Experiments on Opinion Mining [0.5735035463793008]
This paper studies the behaviour of the cutting-edge Transformer-based language models on opinion mining.
Our comparative study shows leads and paves the way for production engineers regarding the approach to focus on.
arXiv Detail & Related papers (2023-08-07T01:10:50Z) - Inverse Dynamics Pretraining Learns Good Representations for Multitask
Imitation [66.86987509942607]
We evaluate how such a paradigm should be done in imitation learning.
We consider a setting where the pretraining corpus consists of multitask demonstrations.
We argue that inverse dynamics modeling is well-suited to this setting.
arXiv Detail & Related papers (2023-05-26T14:40:46Z) - Neural networks for learning personality traits from natural language [0.0]
This thesis project is highly experimental, and the motivation behind it is to present detailed analyses on the topic.
The starting point is a dictionary of adjectives that psychological literature defines as markers of the five major personality traits, or Big Five.
We use a class of distributional algorithms invented in 2013 by Tomas Mikolov, which consists of using a convolutional neural network that learns the contexts of words in an unsupervised way.
arXiv Detail & Related papers (2023-02-23T10:33:40Z) - What do Large Language Models Learn beyond Language? [10.9650651784511]
We find that pretrained models significantly outperform comparable non-pretrained neural models.
Experiments surprisingly reveal that the positive effects of pre-training persist even when pretraining on multi-lingual text or computer code.
Our findings suggest a hitherto unexplored deep connection between pre-training and inductive learning abilities of language models.
arXiv Detail & Related papers (2022-10-21T23:43:13Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
We propose a multilingual robustness evaluation platform for NLP tasks (TextFlint)
It incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analysis.
TextFlint generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model's robustness.
arXiv Detail & Related papers (2021-03-21T17:20:38Z) - How Can We Accelerate Progress Towards Human-like Linguistic
Generalization? [22.810889064523167]
The paper describes and critiques the Pretraining-Agnostic Identically Distributed (PAID) evaluation paradigm.
This paradigm consists of three stages: (1) pre-training of a word prediction model on a corpus of arbitrary size; (2) fine-tuning (transfer learning) on a training set representing a classification task; (3) evaluation on a test set drawn from the same distribution as that training set.
arXiv Detail & Related papers (2020-05-03T00:31:15Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP)
In this paper, we explore the landscape of introducing transfer learning techniques for NLP by a unified framework that converts all text-based language problems into a text-to-text format.
arXiv Detail & Related papers (2019-10-23T17:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.