FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling
- URL: http://arxiv.org/abs/2403.02630v4
- Date: Mon, 10 Jun 2024 14:57:11 GMT
- Title: FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling
- Authors: Hongyu Zhang, Dongyi Zheng, Lin Zhong, Xu Yang, Jiyuan Feng, Yunqing Feng, Qing Liao,
- Abstract summary: We propose FedHCDR, a novel Cross-Domain Recommendation framework with Hypergraph signal decoupling.
In this study, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features.
Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly.
- Score: 15.159012729198619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Cross-Domain Recommendation (CDR) has drawn significant attention, which utilizes user data from multiple domains to enhance the recommendation performance. However, current CDR methods require sharing user data across domains, thereby violating the General Data Protection Regulation (GDPR). Consequently, numerous approaches have been proposed for Federated Cross-Domain Recommendation (FedCDR). Nevertheless, the data heterogeneity across different domains inevitably influences the overall performance of federated learning. In this study, we propose FedHCDR, a novel Federated Cross-Domain Recommendation framework with Hypergraph signal decoupling. Specifically, to address the data heterogeneity across domains, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features. The approach employs high-pass and low-pass hypergraph filters to decouple domain-exclusive and domain-shared user representations, which are trained by the local-global bi-directional transfer algorithm. In addition, a hypergraph contrastive learning (HCL) module is devised to enhance the learning of domain-shared user relationship information by perturbing the user hypergraph. Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly.
Related papers
- Adaptive Coordinators and Prompts on Heterogeneous Graphs for Cross-Domain Recommendations [31.05975545409408]
We develop HAGO, a framework to integrate multi-domain graphs into a cohesive structure.
We also develop a universal multi-domain graph pre-training strategy.
Our solutions outperform state-of-the-art methods in multi-domain recommendation scenarios.
arXiv Detail & Related papers (2024-10-15T15:50:53Z) - Graph Signal Processing for Cross-Domain Recommendation [37.87497277046321]
Cross-domain recommendation (CDR) extends conventional recommender systems by leveraging user-item interactions from dense domains to mitigate data sparsity and the cold start problem.
Most existing CDR methods suffer from sensitivity to the ratio of overlapping users and intrinsic discrepancy between source and target domains.
We propose CGSP, a unified CDR framework based on GSP, which employs a cross-domain similarity graph constructed by flexibly combining target-only similarity and source-bridged similarity.
arXiv Detail & Related papers (2024-07-17T07:52:45Z) - Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR (Cross-Domain Recommendation) is a critical solution to data sparsity problem in recommendation system.
We present HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning), an end-to-end heterogeneous network architecture.
Experiments on real-world datasets and online A/B tests prove that our proposed model can transmit information among domains effectively.
arXiv Detail & Related papers (2024-07-01T02:27:54Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
We propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information.
Experimental results on two real-world datasets demonstrate the superiority of our proposed model.
arXiv Detail & Related papers (2023-11-14T16:07:16Z) - FedDCSR: Federated Cross-domain Sequential Recommendation via
Disentangled Representation Learning [17.497009723665116]
We propose FedDCSR, a novel cross-domain sequential recommendation framework via disentangled representation learning.
We introduce an approach called inter-intra domain sequence representation disentanglement (SRD) to disentangle user sequence features into domain-shared and domain-exclusive features.
In addition, we design an intra domain contrastive infomax (CIM) strategy to learn richer domain-exclusive features of users by performing data augmentation on user sequences.
arXiv Detail & Related papers (2023-09-15T14:23:20Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
Multi-domain recommender systems benefit from cross-domain representation learning and positive knowledge transfer.
We use temporal intra- and inter-domain interactions as contextual information for our method called MAGRec.
We perform experiments on publicly available datasets in different scenarios where MAGRec consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-02-12T19:51:32Z) - Cross-domain recommendation via user interest alignment [20.387327479445773]
Cross-domain recommendation aims to leverage knowledge from multiple domains to alleviate the data sparsity and cold-start problems in traditional recommender systems.
The general practice of this approach is to train user embeddings in each domain separately and then aggregate them in a plain manner.
We propose a novel cross-domain recommendation framework, namely COAST, to improve recommendation performance on dual domains.
arXiv Detail & Related papers (2023-01-26T23:54:41Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.