Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
- URL: http://arxiv.org/abs/2403.02648v4
- Date: Mon, 13 Jan 2025 19:05:07 GMT
- Title: Remove that Square Root: A New Efficient Scale-Invariant Version of AdaGrad
- Authors: Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horvath, Martin Takac, Eduard Gorbunov,
- Abstract summary: This paper introduces a novel adaptive algorithm named KATE which consistently matches complex machine learning tasks.
We compare KATE to other state-of-the-art adaptive algorithms Adam AdaGrad in numerical experiments with different problems.
- Score: 16.249992982986956
- License:
- Abstract: Adaptive methods are extremely popular in machine learning as they make learning rate tuning less expensive. This paper introduces a novel optimization algorithm named KATE, which presents a scale-invariant adaptation of the well-known AdaGrad algorithm. We prove the scale-invariance of KATE for the case of Generalized Linear Models. Moreover, for general smooth non-convex problems, we establish a convergence rate of $O \left(\frac{\log T}{\sqrt{T}} \right)$ for KATE, matching the best-known ones for AdaGrad and Adam. We also compare KATE to other state-of-the-art adaptive algorithms Adam and AdaGrad in numerical experiments with different problems, including complex machine learning tasks like image classification and text classification on real data. The results indicate that KATE consistently outperforms AdaGrad and matches/surpasses the performance of Adam in all considered scenarios.
Related papers
- Towards Simple and Provable Parameter-Free Adaptive Gradient Methods [56.060918447252625]
We present AdaGrad++ and Adam++, novel and simple parameter-free variants of AdaGrad and Adam with convergence guarantees.
We prove that AdaGrad++ achieves comparable convergence rates to AdaGrad in convex optimization without predefined learning rate assumptions. Similarly, Adam++ matches the convergence rate of Adam without relying on any conditions on the learning rates.
arXiv Detail & Related papers (2024-12-27T04:22:02Z) - ELRA: Exponential learning rate adaption gradient descent optimization
method [83.88591755871734]
We present a novel, fast (exponential rate), ab initio (hyper-free) gradient based adaption.
The main idea of the method is to adapt the $alpha by situational awareness.
It can be applied to problems of any dimensions n and scales only linearly.
arXiv Detail & Related papers (2023-09-12T14:36:13Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
Pairwise learning refers to learning tasks where the loss function depends on a pair instances.
Online descent (OGD) is a popular approach to handle streaming data in pairwise learning.
In this paper, we propose simple and online descent to methods for pairwise learning.
arXiv Detail & Related papers (2021-11-23T18:10:48Z) - Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and
Costs [45.87981728307819]
The ability to compare and align related datasets living in heterogeneous spaces plays an increasingly important role in machine learning.
The Gromov-Wasserstein (GW) formalism can help tackle this problem.
arXiv Detail & Related papers (2021-06-02T12:50:56Z) - Generalized AdaGrad (G-AdaGrad) and Adam: A State-Space Perspective [0.0]
We propose a new fast, Generalized AdaGrad (G-AdaGrad) for solving non machine learning problems.
Specifically, we adopt a state-space perspective for analyzing the convergence acceleration algorithms, namely G-AdaGrad and Adam.
arXiv Detail & Related papers (2021-05-31T20:30:25Z) - Correcting Momentum with Second-order Information [50.992629498861724]
We develop a new algorithm for non-critical optimization that finds an $O(epsilon)$epsilon point in the optimal product.
We validate our results on a variety of large-scale deep learning benchmarks and architectures.
arXiv Detail & Related papers (2021-03-04T19:01:20Z) - Convergence of Online Adaptive and Recurrent Optimization Algorithms [0.0]
We prove local convergence of several notable descent algorithms used in machine learning.
We adopt an "ergodic" rather than probabilistic viewpoint, working with empirical time averages instead of probability distributions.
arXiv Detail & Related papers (2020-05-12T09:48:52Z) - Ranking a set of objects: a graph based least-square approach [70.7866286425868]
We consider the problem of ranking $N$ objects starting from a set of noisy pairwise comparisons provided by a crowd of equal workers.
We propose a class of non-adaptive ranking algorithms that rely on a least-squares intrinsic optimization criterion for the estimation of qualities.
arXiv Detail & Related papers (2020-02-26T16:19:09Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.