RulePrompt: Weakly Supervised Text Classification with Prompting PLMs and Self-Iterative Logical Rules
- URL: http://arxiv.org/abs/2403.02932v2
- Date: Thu, 25 Apr 2024 09:23:28 GMT
- Title: RulePrompt: Weakly Supervised Text Classification with Prompting PLMs and Self-Iterative Logical Rules
- Authors: Miaomiao Li, Jiaqi Zhu, Yang Wang, Yi Yang, Yilin Li, Hongan Wang,
- Abstract summary: Weakly supervised text classification (WSTC) has attracted increasing attention due to its applicability in classifying a mass of texts.
We propose a prompting PLM-based approach named RulePrompt for the WSTC task, consisting of a rule mining module and a rule-enhanced pseudo label generation module.
Our approach yields interpretable category rules, proving its advantage in disambiguating easily-confused categories.
- Score: 30.239044569301534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised text classification (WSTC), also called zero-shot or dataless text classification, has attracted increasing attention due to its applicability in classifying a mass of texts within the dynamic and open Web environment, since it requires only a limited set of seed words (label names) for each category instead of labeled data. With the help of recently popular prompting Pre-trained Language Models (PLMs), many studies leveraged manually crafted and/or automatically identified verbalizers to estimate the likelihood of categories, but they failed to differentiate the effects of these category-indicative words, let alone capture their correlations and realize adaptive adjustments according to the unlabeled corpus. In this paper, in order to let the PLM effectively understand each category, we at first propose a novel form of rule-based knowledge using logical expressions to characterize the meanings of categories. Then, we develop a prompting PLM-based approach named RulePrompt for the WSTC task, consisting of a rule mining module and a rule-enhanced pseudo label generation module, plus a self-supervised fine-tuning module to make the PLM align with this task. Within this framework, the inaccurate pseudo labels assigned to texts and the imprecise logical rules associated with categories mutually enhance each other in an alternative manner. That establishes a self-iterative closed loop of knowledge (rule) acquisition and utilization, with seed words serving as the starting point. Extensive experiments validate the effectiveness and robustness of our approach, which markedly outperforms state-of-the-art weakly supervised methods. What is more, our approach yields interpretable category rules, proving its advantage in disambiguating easily-confused categories.
Related papers
- SciPrompt: Knowledge-augmented Prompting for Fine-grained Categorization of Scientific Topics [2.3742710594744105]
We introduce SciPrompt, a framework designed to automatically retrieve scientific topic-related terms for low-resource text classification tasks.
Our method outperforms state-of-the-art, prompt-based fine-tuning methods on scientific text classification tasks under few and zero-shot settings.
arXiv Detail & Related papers (2024-10-02T18:45:04Z) - TELEClass: Taxonomy Enrichment and LLM-Enhanced Hierarchical Text Classification with Minimal Supervision [41.05874642535256]
Hierarchical text classification aims to categorize each document into a set of classes in a label taxonomy.
Most earlier works focus on fully or semi-supervised methods that require a large amount of human annotated data.
We work on hierarchical text classification with the minimal amount of supervision: using the sole class name of each node as the only supervision.
arXiv Detail & Related papers (2024-02-29T22:26:07Z) - Gen-Z: Generative Zero-Shot Text Classification with Contextualized
Label Descriptions [50.92702206798324]
We propose a generative prompting framework for zero-shot text classification.
GEN-Z measures the LM likelihood of input text conditioned on natural language descriptions of labels.
We show that zero-shot classification with simple contextualization of the data source consistently outperforms both zero-shot and few-shot baselines.
arXiv Detail & Related papers (2023-11-13T07:12:57Z) - Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation [2.024620791810963]
This study benchmarks the performance of Prompt Tuning and baselines for multi-label text classification.
It is applied to classifying companies into an investment firm's proprietary industry taxonomy.
We confirm that the model's performance is consistent across both well-known and less-known companies.
arXiv Detail & Related papers (2023-09-21T13:45:32Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
Self-Supervised Learning (SSL) in model learning process and design a novel self-supervised Relation of Relation (R2) classification task.
Relation of Relation Learning Network (R2-Net) for text classification, in which text classification and R2 classification are treated as optimization targets.
external knowledge from WordNet to obtain multi-aspect descriptions for label semantic learning.
arXiv Detail & Related papers (2023-06-15T02:19:34Z) - PIEClass: Weakly-Supervised Text Classification with Prompting and
Noise-Robust Iterative Ensemble Training [42.013879670590214]
Weakly-supervised text classification trains a classifier using the label name of each target class as the only supervision.
We propose a new method, PIEClass, consisting of two modules.
PIEClass achieves overall better performance than existing strong baselines on seven benchmark datasets.
arXiv Detail & Related papers (2023-05-23T06:19:14Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
We propose a vision-language prompt tuning method with mitigated label bias (M-Tuning)
It introduces open words from the WordNet to extend the range of words forming the prompt texts from only closed-set label words to more, and thus prompts are tuned in a simulated open-set scenario.
Our method achieves the best performance on datasets with various scales, and extensive ablation studies also validate its effectiveness.
arXiv Detail & Related papers (2023-03-09T09:05:47Z) - Learning Label Modular Prompts for Text Classification in the Wild [56.66187728534808]
We propose text classification in-the-wild, which introduces different non-stationary training/testing stages.
Decomposing a complex task into modular components can enable robust generalisation under such non-stationary environment.
We propose MODULARPROMPT, a label-modular prompt tuning framework for text classification tasks.
arXiv Detail & Related papers (2022-11-30T16:26:38Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
We propose a brand-new prefix-tuning method, Counterfactual Contrastive Prefix-tuning (CCPrefix) for many-class classification.
Basically, an instance-dependent soft prefix, derived from fact-counterfactual pairs in the label space, is leveraged to complement the language verbalizers in many-class classification.
arXiv Detail & Related papers (2022-11-11T03:45:59Z) - PTR: Prompt Tuning with Rules for Text Classification [64.1655047016891]
Fine-tuned pre-trained language models (PLMs) have achieved awesome performance on almost all NLP tasks.
We propose prompt tuning with rules (PTR) for many-class text classification.
PTR is able to encode prior knowledge of each class into prompt tuning.
arXiv Detail & Related papers (2021-05-24T13:24:02Z) - Description Based Text Classification with Reinforcement Learning [34.18824470728299]
We propose a new framework for text classification, in which each category label is associated with a category description.
We observe significant performance boosts over strong baselines on a wide range of text classification tasks.
arXiv Detail & Related papers (2020-02-08T02:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.