SAFFIRA: a Framework for Assessing the Reliability of
Systolic-Array-Based DNN Accelerators
- URL: http://arxiv.org/abs/2403.02946v1
- Date: Tue, 5 Mar 2024 13:17:09 GMT
- Title: SAFFIRA: a Framework for Assessing the Reliability of
Systolic-Array-Based DNN Accelerators
- Authors: Mahdi Taheri, Masoud Daneshtalab, Jaan Raik, Maksim Jenihhin,
Salvatore Pappalardo, Paul Jimenez, Bastien Deveautour, and Alberto Bosio
- Abstract summary: This paper introduces a novel hierarchical software-based hardware-aware fault injection strategy tailored for systolic array-based Deep Neural Network (DNN) accelerators.
- Score: 0.4391603054571586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Systolic array has emerged as a prominent architecture for Deep Neural
Network (DNN) hardware accelerators, providing high-throughput and low-latency
performance essential for deploying DNNs across diverse applications. However,
when used in safety-critical applications, reliability assessment is mandatory
to guarantee the correct behavior of DNN accelerators. While fault injection
stands out as a well-established practical and robust method for reliability
assessment, it is still a very time-consuming process. This paper addresses the
time efficiency issue by introducing a novel hierarchical software-based
hardware-aware fault injection strategy tailored for systolic array-based DNN
accelerators.
Related papers
- Exploration of Activation Fault Reliability in Quantized Systolic
Array-Based DNN Accelerators [0.8796261172196743]
This paper presents a comprehensive methodology for exploring and enabling a holistic assessment of the impact of quantization on model accuracy, activation fault reliability, and hardware efficiency.
A fully automated framework is introduced that is capable of applying various quantization-aware techniques, fault injection, and hardware implementation.
The experiments on established benchmarks demonstrate the analysis flow and the profound implications of quantization on reliability, hardware performance, and network accuracy.
arXiv Detail & Related papers (2024-01-17T12:55:17Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - Special Session: Approximation and Fault Resiliency of DNN Accelerators [0.9126382223122612]
This paper explores the approximation and fault resiliency of Deep Neural Network accelerators.
We propose to use approximate (AxC) arithmetic circuits to emulate errors in hardware without performing fault injection on the DNN.
We also propose a fine-grain analysis of fault resiliency by examining fault propagation and masking in networks.
arXiv Detail & Related papers (2023-05-31T19:27:45Z) - APPRAISER: DNN Fault Resilience Analysis Employing Approximation Errors [1.1091582432763736]
Deep Neural Networks (DNNs) in safety-critical applications raise new reliability concerns.
State-of-the-art methods for fault injection by emulation incur a spectrum of time-, design- and control-complexity problems.
APPRAISER is proposed that applies functional approximation for a non-conventional purpose and employs approximate computing errors.
arXiv Detail & Related papers (2023-05-31T10:53:46Z) - DeepAxe: A Framework for Exploration of Approximation and Reliability
Trade-offs in DNN Accelerators [0.9556128246747769]
The role of Deep Neural Networks (DNNs) in safety-critical applications is expanding.
DNNs experience massive growth in terms of computation power.
It raises the necessity of improving the reliability of DNN accelerators.
arXiv Detail & Related papers (2023-03-14T20:42:38Z) - DeepVigor: Vulnerability Value Ranges and Factors for DNNs' Reliability
Assessment [1.189955933770711]
Deep Neural Networks (DNNs) and their accelerators are being deployed more frequently in safety-critical applications.
We propose a novel accurate, fine-grain, metric-oriented, and accelerator-agnostic method called DeepVigor.
arXiv Detail & Related papers (2023-03-13T08:55:10Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Automatic Mapping of the Best-Suited DNN Pruning Schemes for Real-Time
Mobile Acceleration [71.80326738527734]
We propose a general, fine-grained structured pruning scheme and corresponding compiler optimizations.
We show that our pruning scheme mapping methods, together with the general fine-grained structured pruning scheme, outperform the state-of-the-art DNN optimization framework.
arXiv Detail & Related papers (2021-11-22T23:53:14Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.