AgentsCourt: Building Judicial Decision-Making Agents with Court Debate Simulation and Legal Knowledge Augmentation
- URL: http://arxiv.org/abs/2403.02959v3
- Date: Sat, 21 Sep 2024 14:49:53 GMT
- Title: AgentsCourt: Building Judicial Decision-Making Agents with Court Debate Simulation and Legal Knowledge Augmentation
- Authors: Zhitao He, Pengfei Cao, Chenhao Wang, Zhuoran Jin, Yubo Chen, Jiexin Xu, Huaijun Li, Xiaojian Jiang, Kang Liu, Jun Zhao,
- Abstract summary: We propose a novel multi-agent framework, AgentsCourt, for judicial decision-making.
Our framework follows the classic court trial process, consisting of court debate simulation, legal resources retrieval and decision-making refinement.
To support this task, we construct a large-scale legal knowledge base, Legal-KB, with multi-resource legal knowledge.
- Score: 19.733007669738008
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the development of deep learning, natural language processing technology has effectively improved the efficiency of various aspects of the traditional judicial industry. However, most current efforts focus on tasks within individual judicial stages, making it difficult to handle complex tasks that span multiple stages. As the autonomous agents powered by large language models are becoming increasingly smart and able to make complex decisions in real-world settings, offering new insights for judicial intelligence. In this paper, (1) we propose a novel multi-agent framework, AgentsCourt, for judicial decision-making. Our framework follows the classic court trial process, consisting of court debate simulation, legal resources retrieval and decision-making refinement to simulate the decision-making of judge. (2) we introduce SimuCourt, a judicial benchmark that encompasses 420 Chinese judgment documents, spanning the three most common types of judicial cases. Furthermore, to support this task, we construct a large-scale legal knowledge base, Legal-KB, with multi-resource legal knowledge. (3) Extensive experiments show that our framework outperforms the existing advanced methods in various aspects, especially in generating legal articles, where our model achieves significant improvements of 8.6% and 9.1% F1 score in the first and second instance settings, respectively.
Related papers
- Agents on the Bench: Large Language Model Based Multi Agent Framework for Trustworthy Digital Justice [0.5217870815854703]
We propose a large language model based multi-agent framework named AgentsBench.
Our approach leverages multiple LLM-driven agents that simulate the collaborative deliberation and decision making process of a judicial bench.
Our framework reflects real-world judicial processes more closely, enhancing accuracy, fairness, and society consideration.
arXiv Detail & Related papers (2024-12-24T23:13:37Z) - LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBench is a benchmark specifically designed to evaluate LLM Agents in the Chinese legal domain.
LegalAgentBench includes 17 corpora from real-world legal scenarios and provides 37 tools for interacting with external knowledge.
arXiv Detail & Related papers (2024-12-23T04:02:46Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
We propose a novel few-shot workflow tailored to the relevant judgment of legal cases.
By comparing the relevance judgments of LLMs and human experts, we empirically show that we can obtain reliable relevance judgments.
arXiv Detail & Related papers (2024-03-27T09:46:56Z) - LLM vs. Lawyers: Identifying a Subset of Summary Judgments in a Large UK
Case Law Dataset [0.0]
This study addresses the gap in the literature working with large legal corpora about how to isolate cases, in our case summary judgments, from a large corpus of UK court decisions.
We use the Cambridge Law Corpus of 356,011 UK court decisions and determine that the large language model achieves a weighted F1 score of 0.94 versus 0.78 for keywords.
We identify and extract 3,102 summary judgment cases, enabling us to map their distribution across various UK courts over a temporal span.
arXiv Detail & Related papers (2024-03-04T10:13:30Z) - Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
We propose the task of multi-defendant LJP, which aims to automatically predict the judgment results for each defendant of multi-defendant cases.
Two challenges arise with the task of multi-defendant LJP: (1) indistinguishable judgment results among various defendants; and (2) the lack of a real-world dataset for training and evaluation.
arXiv Detail & Related papers (2023-12-10T04:46:30Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.