Shuffling Momentum Gradient Algorithm for Convex Optimization
- URL: http://arxiv.org/abs/2403.03180v1
- Date: Tue, 5 Mar 2024 18:19:02 GMT
- Title: Shuffling Momentum Gradient Algorithm for Convex Optimization
- Authors: Trang H. Tran, Quoc Tran-Dinh, Lam M. Nguyen
- Abstract summary: TheTranart Gradient Descent method (SGD) and its variants have become methods choice for solving finite-sum optimization problems from machine learning and data science.
We provide the first analysis of shuffling momentum-based methods for the strongly setting.
- Score: 22.58278411628813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Stochastic Gradient Descent method (SGD) and its stochastic variants have
become methods of choice for solving finite-sum optimization problems arising
from machine learning and data science thanks to their ability to handle
large-scale applications and big datasets. In the last decades, researchers
have made substantial effort to study the theoretical performance of SGD and
its shuffling variants. However, only limited work has investigated its
shuffling momentum variants, including shuffling heavy-ball momentum schemes
for non-convex problems and Nesterov's momentum for convex settings. In this
work, we extend the analysis of the shuffling momentum gradient method
developed in [Tran et al (2021)] to both finite-sum convex and strongly convex
optimization problems. We provide the first analysis of shuffling
momentum-based methods for the strongly convex setting, attaining a convergence
rate of $O(1/nT^2)$, where $n$ is the number of samples and $T$ is the number
of training epochs. Our analysis is a state-of-the-art, matching the best rates
of existing shuffling stochastic gradient algorithms in the literature.
Related papers
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.
In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features [65.64276393443346]
The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints.
We present two new variants of the algorithms for minimization of the finite-sum gradient.
arXiv Detail & Related papers (2023-04-23T20:05:09Z) - Formal guarantees for heuristic optimization algorithms used in machine
learning [6.978625807687497]
Gradient Descent (SGD) and its variants have become the dominant methods in the large-scale optimization machine learning (ML) problems.
We provide formal guarantees of a few convex optimization methods and proposing improved algorithms.
arXiv Detail & Related papers (2022-07-31T19:41:22Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Whiplash Gradient Descent Dynamics [2.0508733018954843]
We introduce the symplectic convergence analysis for the Whiplash system for convex functions.
We study the algorithm's performance for various costs and provide a practical methodology for analyzing convergence rates.
arXiv Detail & Related papers (2022-03-04T05:47:26Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - The Role of Momentum Parameters in the Optimal Convergence of Adaptive
Polyak's Heavy-ball Methods [12.93796690939018]
We prove that the adaptive Polyak's Heavy-ball (HB) method attains an optimal individual convergence rate of $O(frac1sqrtt)$.
Our new analysis shows how the HB momentum and its time-varying weight help us to achieve the acceleration in convex optimization.
arXiv Detail & Related papers (2021-02-15T02:57:14Z) - Adaptive Gradient Methods Can Be Provably Faster than SGD after Finite
Epochs [25.158203665218164]
We show that adaptive gradient methods can be faster than random shuffling SGD after finite time.
To the best of our knowledge, it is the first to demonstrate that adaptive gradient methods can be faster than SGD after finite time.
arXiv Detail & Related papers (2020-06-12T09:39:47Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z) - Better Theory for SGD in the Nonconvex World [2.6397379133308214]
Large-scale non optimization problems are ubiquitous in modern machine learning.
We perform experiments on the effects of a wide array of synthetic minibatch sizes on the Gradient Descent (SG) problem.
arXiv Detail & Related papers (2020-02-09T09:56:06Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.