OCD-FL: A Novel Communication-Efficient Peer Selection-based Decentralized Federated Learning
- URL: http://arxiv.org/abs/2403.04037v2
- Date: Fri, 22 Nov 2024 16:42:26 GMT
- Title: OCD-FL: A Novel Communication-Efficient Peer Selection-based Decentralized Federated Learning
- Authors: Nizar Masmoudi, Wael Jaafar,
- Abstract summary: We propose an opportunistic communication-efficient decentralized federated learning (OCD-FL) scheme.
OCD-FL consists of a systematic FL peer selection for collaboration, aiming to achieve maximum FL knowledge gain while reducing energy consumption.
Experimental results demonstrate the capability of OCD-FL to achieve similar or better performances than the fully collaborative FL, while significantly reducing consumed energy by at least 30% and up to 80%.
- Score: 2.203783085755103
- License:
- Abstract: The conjunction of edge intelligence and the ever-growing Internet-of-Things (IoT) network heralds a new era of collaborative machine learning, with federated learning (FL) emerging as the most prominent paradigm. With the growing interest in these learning schemes, researchers started addressing some of their most fundamental limitations. Indeed, conventional FL with a central aggregator presents a single point of failure and a network bottleneck. To bypass this issue, decentralized FL where nodes collaborate in a peer-to-peer network has been proposed. Despite the latter's efficiency, communication costs and data heterogeneity remain key challenges in decentralized FL. In this context, we propose a novel scheme, called opportunistic communication-efficient decentralized federated learning, a.k.a., OCD-FL, consisting of a systematic FL peer selection for collaboration, aiming to achieve maximum FL knowledge gain while reducing energy consumption. Experimental results demonstrate the capability of OCD-FL to achieve similar or better performances than the fully collaborative FL, while significantly reducing consumed energy by at least 30% and up to 80%.
Related papers
- FedCompetitors: Harmonious Collaboration in Federated Learning with
Competing Participants [41.070716405671206]
Federated learning (FL) provides a privacy-preserving approach for collaborative training of machine learning models.
It is crucial to select appropriate collaborators for each FL participant based on data complementarity.
It is imperative to consider the inter-individual relationships among FL-PTs where some FL-PTs engage in competition.
arXiv Detail & Related papers (2023-12-18T17:53:01Z) - FLrce: Resource-Efficient Federated Learning with Early-Stopping Strategy [7.963276533979389]
Federated Learning (FL) achieves great popularity in the Internet of Things (IoT)
We present FLrce, an efficient FL framework with a relationship-based client selection and early-stopping strategy.
Experiment results show that, compared with existing efficient FL frameworks, FLrce improves the computation and communication efficiency by at least 30% and 43% respectively.
arXiv Detail & Related papers (2023-10-15T10:13:44Z) - Towards Understanding Generalization and Stability Gaps between Centralized and Decentralized Federated Learning [57.35402286842029]
We show that centralized learning always generalizes better than decentralized learning (DFL)
We also conduct experiments on several common setups in FL to validate that our theoretical analysis is consistent with experimental phenomena and contextually valid in several general and practical scenarios.
arXiv Detail & Related papers (2023-10-05T11:09:42Z) - Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
Decentralized federated learning (DFL) has gained popularity due to its practicality across various applications.
Compared to the centralized version, training a shared model among a large number of nodes in DFL is more challenging.
We develop a novel algorithm based on the framework of the inexact alternating direction method (iADM)
arXiv Detail & Related papers (2023-08-31T12:22:40Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner.
Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified.
The current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization.
arXiv Detail & Related papers (2023-06-25T13:10:38Z) - On the Design of Communication-Efficient Federated Learning for Health
Monitoring [21.433739206682404]
We propose a communication-efficient federated learning (CEFL) framework that involves clients clustering and transfer learning.
CEFL can save up to 98.45% in communication costs while conceding less than 3% in accuracy loss, when compared to the conventional FL.
arXiv Detail & Related papers (2022-11-30T12:52:23Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Decentralized Federated Learning: Balancing Communication and Computing
Costs [21.694468026280806]
Decentralized federated learning (DFL) is a powerful framework of distributed machine learning.
We propose a general decentralized federated learning framework to strike a balance between communication-efficiency and convergence performance.
Experiment results based on MNIST and CIFAR-10 datasets illustrate the superiority of DFL over traditional decentralized SGD methods.
arXiv Detail & Related papers (2021-07-26T09:09:45Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
Internet of Things (IoT) devices may not be able to transmit their collected data to a central controller for training machine learning models.
Google's seminal FL algorithm requires all devices to be directly connected with a central controller.
This paper introduces a novel FL framework, called collaborative FL (CFL), which enables edge devices to implement FL with less reliance on a central controller.
arXiv Detail & Related papers (2020-06-03T20:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.