SGNet: Folding Symmetrical Protein Complex with Deep Learning
- URL: http://arxiv.org/abs/2403.04395v1
- Date: Thu, 7 Mar 2024 10:39:48 GMT
- Title: SGNet: Folding Symmetrical Protein Complex with Deep Learning
- Authors: Zhaoqun Li, Jingcheng Yu, Qiwei Ye
- Abstract summary: We propose a protein folding framework called SGNet to model protein-protein interactions in symmetrical assemblies.
Thanks to the elaborate design of modeling symmetry consistently, we can model all global symmetry types in quaternary protein structure prediction.
- Score: 4.064036667570452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has made significant progress in protein structure prediction,
advancing the development of computational biology. However, despite the high
accuracy achieved in predicting single-chain structures, a significant number
of large homo-oligomeric assemblies exhibit internal symmetry, posing a major
challenge in structure determination. The performances of existing deep
learning methods are limited since the symmetrical protein assembly usually has
a long sequence, making structural computation infeasible. In addition,
multiple identical subunits in symmetrical protein complex cause the issue of
supervision ambiguity in label assignment, requiring a consistent structure
modeling for the training. To tackle these problems, we propose a protein
folding framework called SGNet to model protein-protein interactions in
symmetrical assemblies. SGNet conducts feature extraction on a single subunit
and generates the whole assembly using our proposed symmetry module, which
largely mitigates computational problems caused by sequence length. Thanks to
the elaborate design of modeling symmetry consistently, we can model all global
symmetry types in quaternary protein structure prediction. Extensive
experimental results on a benchmark of symmetrical protein complexes further
demonstrate the effectiveness of our method.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Protein Sequence and Structure Co-Design with Equivariant Translation [19.816174223173494]
Existing approaches generate both protein sequence and structure using either autoregressive models or diffusion models.
We propose a new approach capable of protein sequence and structure co-design, which iteratively translates both protein sequence and structure into the desired state.
Our model consists of a trigonometry-aware encoder that reasons geometrical constraints and interactions from context features.
All protein amino acids are updated in one shot in each translation step, which significantly accelerates the inference process.
arXiv Detail & Related papers (2022-10-17T06:00:12Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures.
We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position.
Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment.
arXiv Detail & Related papers (2021-11-15T18:46:37Z) - Intrinsic-Extrinsic Convolution and Pooling for Learning on 3D Protein
Structures [18.961218808251076]
We propose two new learning operations enabling deep 3D analysis of large-scale protein data.
First, we introduce a novel convolution operator which considers both, the intrinsic (invariant under protein folding) as well as extrinsic (invariant under bonding) structure.
Second, we enable a multi-scale protein analysis by introducing hierarchical pooling operators, exploiting the fact that proteins are a recombination of a finite set of amino acids.
arXiv Detail & Related papers (2020-07-13T09:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.