Boosting Fairness and Robustness in Over-the-Air Federated Learning
- URL: http://arxiv.org/abs/2403.04431v1
- Date: Thu, 7 Mar 2024 12:03:04 GMT
- Title: Boosting Fairness and Robustness in Over-the-Air Federated Learning
- Authors: Halil Yigit Oksuz, Fabio Molinari, Henning Sprekeler, Joerg Raisch
- Abstract summary: Over-the-Air Computation is a beyond-5G communication strategy.
We propose an Over-the-Air federated learning algorithm that aims to provide fairness and robustness through minmax optimization.
- Score: 3.2088888904556123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over-the-Air Computation is a beyond-5G communication strategy that has
recently been shown to be useful for the decentralized training of machine
learning models due to its efficiency. In this paper, we propose an
Over-the-Air federated learning algorithm that aims to provide fairness and
robustness through minmax optimization. By using the epigraph form of the
problem at hand, we show that the proposed algorithm converges to the optimal
solution of the minmax problem. Moreover, the proposed approach does not
require reconstructing channel coefficients by complex encoding-decoding
schemes as opposed to state-of-the-art approaches. This improves both
efficiency and privacy.
Related papers
- CHARME: A chain-based reinforcement learning approach for the minor embedding problem [16.24890195949869]
We propose a novel approach utilizing Reinforcement Learning (RL) techniques to address the minor embedding problem, named CHARME.
CHARME includes three key components: a Graph Neural Network (GNN) architecture for policy modeling, a state transition algorithm ensuring solution validity, and an order exploration strategy for effective training.
In details, CHARME yields superior solutions compared to fast embedding methods such as Minorminer and ATOM.
arXiv Detail & Related papers (2024-06-11T10:12:10Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Federated Compositional Deep AUC Maximization [58.25078060952361]
We develop a novel federated learning method for imbalanced data by directly optimizing the area under curve (AUC) score.
To the best of our knowledge, this is the first work to achieve such favorable theoretical results.
arXiv Detail & Related papers (2023-04-20T05:49:41Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Federated Learning with a Sampling Algorithm under Isoperimetry [9.990687944474738]
Federated learning uses a set of techniques to efficiently distribute the training of a machine learning algorithm across several devices.
We propose a communication-efficient variant of Langevinvin's sample a posteriori.
arXiv Detail & Related papers (2022-06-02T08:19:03Z) - Federated Learning via Inexact ADMM [46.99210047518554]
In this paper, we develop an inexact alternating direction method of multipliers (ADMM)
It is both- and communication-efficient, capable of combating the stragglers' effect, and convergent under mild conditions.
It has a high numerical performance compared with several state-of-the-art algorithms for federated learning.
arXiv Detail & Related papers (2022-04-22T09:55:33Z) - On the Unreasonable Efficiency of State Space Clustering in
Personalization Tasks [1.495380389108477]
We consider a reinforcement learning (RL) technique for solving personalization tasks with complex reward signals.
Our approach is based on state space clustering with the use of a simplistic $k$-means algorithm.
arXiv Detail & Related papers (2021-12-24T21:12:40Z) - Deep Learning Methods for Joint Optimization of Beamforming and
Fronthaul Quantization in Cloud Radio Access Networks [12.838832724944615]
Cooperative beamforming across points (APs) and fronthaulization strategies are essential for cloud radio network (C-RAN) systems.
Non-dimensional quantity problem is stemmed from per-AP power and fronthaul capacity constraints.
We investigate a deep learning optimization module is where well-trained deep neural network (DNN)
Numerical results validate the advantages of the proposed learning solution.
arXiv Detail & Related papers (2021-07-06T10:27:43Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.