A Domain Translation Framework with an Adversarial Denoising Diffusion
Model to Generate Synthetic Datasets of Echocardiography Images
- URL: http://arxiv.org/abs/2403.04612v1
- Date: Thu, 7 Mar 2024 15:58:03 GMT
- Title: A Domain Translation Framework with an Adversarial Denoising Diffusion
Model to Generate Synthetic Datasets of Echocardiography Images
- Authors: Cristiana Tiago, Sten Roar Snare, Jurica Sprem, and Kristin McLeod
- Abstract summary: We introduce a framework to create echocardiography images suitable to be used for clinical research purposes.
For several domain translation operations, the results verified that such generative model was able to synthesize high quality image samples.
- Score: 0.5999777817331317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, medical image domain translation operations show a high demand
from researchers and clinicians. Amongst other capabilities, this task allows
the generation of new medical images with sufficiently high image quality,
making them clinically relevant. Deep Learning (DL) architectures, most
specifically deep generative models, are widely used to generate and translate
images from one domain to another. The proposed framework relies on an
adversarial Denoising Diffusion Model (DDM) to synthesize echocardiography
images and perform domain translation. Contrary to Generative Adversarial
Networks (GANs), DDMs are able to generate high quality image samples with a
large diversity. If a DDM is combined with a GAN, this ability to generate new
data is completed at an even faster sampling time. In this work we trained an
adversarial DDM combined with a GAN to learn the reverse denoising process,
relying on a guide image, making sure relevant anatomical structures of each
echocardiography image were kept and represented on the generated image
samples. For several domain translation operations, the results verified that
such generative model was able to synthesize high quality image samples: MSE:
11.50 +/- 3.69, PSNR (dB): 30.48 +/- 0.09, SSIM: 0.47 +/- 0.03. The proposed
method showed high generalization ability, introducing a framework to create
echocardiography images suitable to be used for clinical research purposes.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Multi-Conditioned Denoising Diffusion Probabilistic Model (mDDPM) for Medical Image Synthesis [22.0080610434872]
We propose a controlled generation framework for synthetic images with annotations.
We show that our approach can produce annotated lung CT images that can faithfully represent anatomy.
Our experiments demonstrate that controlled generative frameworks of this nature can surpass nearly every state-of-the-art image generative model.
arXiv Detail & Related papers (2024-09-07T01:19:02Z) - Paired Diffusion: Generation of related, synthetic PET-CT-Segmentation scans using Linked Denoising Diffusion Probabilistic Models [0.0]
This research introduces a novel architecture that is able to generate multiple, related PET-CT-tumour mask pairs using paired networks and conditional encoders.
Our approach includes innovative, time step-controlled mechanisms and a noise-seeding' strategy to improve DDPM sampling consistency.
arXiv Detail & Related papers (2024-03-26T14:21:49Z) - EMIT-Diff: Enhancing Medical Image Segmentation via Text-Guided
Diffusion Model [4.057796755073023]
We develop controllable diffusion models for medical image synthesis, called EMIT-Diff.
We leverage recent diffusion probabilistic models to generate realistic and diverse synthetic medical image data.
In our approach, we ensure that the synthesized samples adhere to medically relevant constraints.
arXiv Detail & Related papers (2023-10-19T16:18:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - An Attentive-based Generative Model for Medical Image Synthesis [18.94900480135376]
We propose an attention-based dual contrast generative model, called ADC-cycleGAN, which can synthesize medical images from unpaired data with multiple slices.
The model integrates a dual contrast loss term with the CycleGAN loss to ensure that the synthesized images are distinguishable from the source domain.
Experimental results demonstrate that the proposed ADC-cycleGAN model produces comparable samples to other state-of-the-art generative models.
arXiv Detail & Related papers (2023-06-02T14:17:37Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Pathology-Aware Generative Adversarial Networks for Medical Image
Augmentation [0.22843885788439805]
Generative Adversarial Networks (GANs) can generate realistic but novel samples, and thus effectively cover the real image distribution.
This thesis contains four GAN projects aiming to present such novel applications' clinical relevance in collaboration with physicians.
arXiv Detail & Related papers (2021-06-03T15:08:14Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.