That's My Point: Compact Object-centric LiDAR Pose Estimation for
Large-scale Outdoor Localisation
- URL: http://arxiv.org/abs/2403.04755v1
- Date: Thu, 7 Mar 2024 18:55:30 GMT
- Title: That's My Point: Compact Object-centric LiDAR Pose Estimation for
Large-scale Outdoor Localisation
- Authors: Georgi Pramatarov and Matthew Gadd and Paul Newman and Daniele De
Martini
- Abstract summary: This paper is about 3D pose estimation on LiDAR scans with extremely minimal storage requirements.
We achieve this by clustering all points of segmented scans into semantic objects and representing them only with their respective centroid and semantic class.
We achieve accurate metric estimates comparable with state-of-the-art methods with almost half the representation size.
- Score: 18.26335698291226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is about 3D pose estimation on LiDAR scans with extremely minimal
storage requirements to enable scalable mapping and localisation. We achieve
this by clustering all points of segmented scans into semantic objects and
representing them only with their respective centroid and semantic class. In
this way, each LiDAR scan is reduced to a compact collection of four-number
vectors. This abstracts away important structural information from the scenes,
which is crucial for traditional registration approaches. To mitigate this, we
introduce an object-matching network based on self- and cross-correlation that
captures geometric and semantic relationships between entities. The respective
matches allow us to recover the relative transformation between scans through
weighted Singular Value Decomposition (SVD) and RANdom SAmple Consensus
(RANSAC). We demonstrate that such representation is sufficient for metric
localisation by registering point clouds taken under different viewpoints on
the KITTI dataset, and at different periods of time localising between KITTI
and KITTI-360. We achieve accurate metric estimates comparable with
state-of-the-art methods with almost half the representation size, specifically
1.33 kB on average.
Related papers
- KP-RED: Exploiting Semantic Keypoints for Joint 3D Shape Retrieval and Deformation [87.23575166061413]
KP-RED is a unified KeyPoint-driven REtrieval and Deformation framework.
It takes object scans as input and jointly retrieves and deforms the most geometrically similar CAD models.
arXiv Detail & Related papers (2024-03-15T08:44:56Z) - Coupled Laplacian Eigenmaps for Locally-Aware 3D Rigid Point Cloud Matching [0.0]
We propose a new technique, based on graph Laplacian eigenmaps, to match point clouds by taking into account fine local structures.
To deal with the order and sign ambiguity of Laplacian eigenmaps, we introduce a new operator, called Coupled Laplacian.
We show that the similarity between those aligned high-dimensional spaces provides a locally meaningful score to match shapes.
arXiv Detail & Related papers (2024-02-27T10:10:12Z) - LISNeRF Mapping: LiDAR-based Implicit Mapping via Semantic Neural Fields for Large-Scale 3D Scenes [2.822816116516042]
Large-scale semantic mapping is crucial for outdoor autonomous agents to fulfill high-level tasks such as planning and navigation.
This paper proposes a novel method for large-scale 3D semantic reconstruction through implicit representations from posed LiDAR measurements alone.
arXiv Detail & Related papers (2023-11-04T03:55:38Z) - Lidar Panoptic Segmentation and Tracking without Bells and Whistles [48.078270195629415]
We propose a detection-centric network for lidar segmentation and tracking.
One of the core components of our network is the object instance detection branch.
We evaluate our method on several 3D/4D LPS benchmarks and observe that our model establishes a new state-of-the-art among open-sourced models.
arXiv Detail & Related papers (2023-10-19T04:44:43Z) - Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by
Learning Features in Complementary Representations [3.0413873719021995]
We introduce a novel way to predict semantic information from sparse, single-shot LiDAR measurements in the context of autonomous driving.
The approach is aimed specifically at improving the semantic segmentation of top-view grid maps.
For each representation a tailored deep learning architecture is developed to effectively extract semantic information.
arXiv Detail & Related papers (2022-03-02T14:49:51Z) - TC-Net: Triple Context Network for Automated Stroke Lesion Segmentation [0.5482532589225552]
We propose a new network, Triple Context Network (TC-Net), with the capture of spatial contextual information as the core.
Our network is evaluated on the open dataset ATLAS, achieving the highest score of 0.594, Hausdorff distance of 27.005 mm, and average symmetry surface distance of 7.137 mm.
arXiv Detail & Related papers (2022-02-28T11:12:16Z) - Category-Level Metric Scale Object Shape and Pose Estimation [73.92460712829188]
We propose a framework that jointly estimates a metric scale shape and pose from a single RGB image.
We validated our method on both synthetic and real-world datasets to evaluate category-level object pose and shape.
arXiv Detail & Related papers (2021-09-01T12:16:46Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
We argue that the image features extracted at a central point contain limited information for predicting distant keypoints or bounding box boundaries.
To facilitate inference, we propose to instead perform regression from a set of points placed at more advantageous positions.
We apply this proposed framework, called Point-Set Anchors, to object detection, instance segmentation, and human pose estimation.
arXiv Detail & Related papers (2020-07-06T15:59:56Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.