Optimizing Retinal Prosthetic Stimuli with Conditional Invertible Neural Networks
- URL: http://arxiv.org/abs/2403.04884v2
- Date: Mon, 15 Jul 2024 12:49:16 GMT
- Title: Optimizing Retinal Prosthetic Stimuli with Conditional Invertible Neural Networks
- Authors: Yuli Wu, Julian Wittmann, Peter Walter, Johannes Stegmaier,
- Abstract summary: We propose to utilize normalizing flow-based conditional invertible neural networks to optimize retinal implant stimulation in an unsupervised manner.
The invertibility of these networks allows us to use them as a surrogate for the computational model of the visual system.
Compared to other methods, such as trivial downsampling, linear models, and feed-forward convolutional neural networks, the flow-based invertible neural network and its conditional extension yield better visual reconstruction qualities.
- Score: 1.1454121287632515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implantable retinal prostheses offer a promising solution to restore partial vision by circumventing damaged photoreceptor cells in the retina and directly stimulating the remaining functional retinal cells. However, the information transmission between the camera and retinal cells is often limited by the low resolution of the electrode array and the lack of specificity for different ganglion cell types, resulting in suboptimal stimulations. In this work, we propose to utilize normalizing flow-based conditional invertible neural networks to optimize retinal implant stimulation in an unsupervised manner. The invertibility of these networks allows us to use them as a surrogate for the computational model of the visual system, while also encoding input camera signals into optimized electrical stimuli on the electrode array. Compared to other methods, such as trivial downsampling, linear models, and feed-forward convolutional neural networks, the flow-based invertible neural network and its conditional extension yield better visual reconstruction qualities w.r.t. various metrics using a physiologically validated simulation tool.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Design and development of opto-neural processors for simulation of
neural networks trained in image detection for potential implementation in
hybrid robotics [0.0]
Living neural networks offer advantages of lower power consumption, faster processing, and biological realism.
This work proposes a simulated living neural network trained indirectly by backpropagating STDP based algorithms using precision activation by optogenetics.
arXiv Detail & Related papers (2024-01-17T04:42:49Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Bio-Inspired Simple Neural Network for Low-Light Image Restoration: A
Minimalist Approach [8.75682288556859]
In this study, we explore the potential of using a straightforward neural network inspired by the retina model to efficiently restore low-light images.
Our proposed neural network model reduces the computational overhead compared to traditional signal-processing models.
arXiv Detail & Related papers (2023-05-03T01:16:45Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Low-Light Image Restoration Based on Retina Model using Neural Networks [0.0]
The proposed neural network model saves the cost of computational overhead in contrast with traditional signal-processing models, and generates results comparable with complicated deep learning models from the subjective perspective.
This work shows that to directly simulate the functionalities of retinal neurons using neural networks not only avoids the manually seeking for the optimal parameters, but also paves the way to build corresponding artificial versions for certain neurobiological organizations.
arXiv Detail & Related papers (2022-10-04T08:14:49Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
Cortical prostheses are devices implanted in the visual cortex that attempt to restore lost vision by electrically stimulating neurons.
Currently, the vision provided by these devices is limited, and accurately predicting the visual percepts resulting from stimulation is an open challenge.
We propose to address this challenge by utilizing 'brain-like' convolutional neural networks (CNNs), which have emerged as promising models of the visual system.
arXiv Detail & Related papers (2022-09-27T17:33:19Z) - SpikeSEE: An Energy-Efficient Dynamic Scenes Processing Framework for
Retinal Prostheses [3.794154439461156]
We propose an energy-efficient dynamic scenes processing framework (SpikeSEE) that combines a spike representation encoding technique and a bio-inspired spiking recurrent neural network (SRNN) model.
Our proposed SpikeSEE predicts the response of ganglion cells more accurately with lower energy consumption.
arXiv Detail & Related papers (2022-09-16T12:46:10Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
Spiking neural networks are a promising approach towards next-generation models of the brain in computational neuroscience.
We apply end-to-end learning with membrane potential-based backpropagation to a spiking convolutional auto-encoder.
We show that applying regularization on membrane potential and spiking output successfully avoids both dead and bursting neurons.
arXiv Detail & Related papers (2021-09-22T21:27:40Z) - Invertible Surrogate Models: Joint surrogate modelling and
reconstruction of Laser-Wakefield Acceleration by invertible neural networks [55.41644538483948]
Invertible neural networks are a recent technique in machine learning.
We will be introducing invertible surrogate models that approximate complex forward simulation of the physics involved in laser plasma accelerators: iLWFA.
arXiv Detail & Related papers (2021-06-01T12:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.