3D Face Reconstruction Using A Spectral-Based Graph Convolution Encoder
- URL: http://arxiv.org/abs/2403.05218v2
- Date: Wed, 27 Mar 2024 09:21:42 GMT
- Title: 3D Face Reconstruction Using A Spectral-Based Graph Convolution Encoder
- Authors: Haoxin Xu, Zezheng Zhao, Yuxin Cao, Chunyu Chen, Hao Ge, Ziyao Liu,
- Abstract summary: We propose an innovative approach that integrates existing 2D features with 3D features to guide the model learning process.
Our model is trained using 2D-3D data pairs from a combination of datasets and achieves state-of-the-art performance on the NoW benchmark.
- Score: 3.749406324648861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular 3D face reconstruction plays a crucial role in avatar generation, with significant demand in web-related applications such as generating virtual financial advisors in FinTech. Current reconstruction methods predominantly rely on deep learning techniques and employ 2D self-supervision as a means to guide model learning. However, these methods encounter challenges in capturing the comprehensive 3D structural information of the face due to the utilization of 2D images for model training purposes. To overcome this limitation and enhance the reconstruction of 3D structural features, we propose an innovative approach that integrates existing 2D features with 3D features to guide the model learning process. Specifically, we introduce the 3D-ID Loss, which leverages the high-dimensional structure features extracted from a Spectral-Based Graph Convolution Encoder applied to the facial mesh. This approach surpasses the sole reliance on the 3D information provided by the facial mesh vertices coordinates. Our model is trained using 2D-3D data pairs from a combination of datasets and achieves state-of-the-art performance on the NoW benchmark.
Related papers
- Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling [14.341099905684844]
This paper investigates a 2D to 3D image translation method with a straightforward technique, enabling correlated 2D X-ray to 3D CT-like reconstruction.
We observe that existing approaches, which integrate information across multiple 2D views in the latent space lose valuable signal information during latent encoding. Instead, we simply repeat and the 2D views into higher-channel 3D volumes and approach the 3D reconstruction challenge as a straightforward 3D to 3D generative modeling problem.
This method enables the reconstructed 3D volume to retain valuable information from the 2D inputs, which are passed between channel states in a Swin U
arXiv Detail & Related papers (2024-06-26T15:18:20Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - CVRecon: Rethinking 3D Geometric Feature Learning For Neural
Reconstruction [12.53249207602695]
We propose an end-to-end 3D neural reconstruction framework CVRecon.
We exploit the rich geometric embedding in the cost volumes to facilitate 3D geometric feature learning.
arXiv Detail & Related papers (2023-04-28T05:30:19Z) - Cross-Dimensional Refined Learning for Real-Time 3D Visual Perception
from Monocular Video [2.2299983745857896]
We present a novel real-time capable learning method that jointly perceives a 3D scene's geometry structure and semantic labels.
We propose an end-to-end cross-dimensional refinement neural network (CDRNet) to extract both 3D mesh and 3D semantic labeling in real time.
arXiv Detail & Related papers (2023-03-16T11:53:29Z) - Self-Supervised Geometry-Aware Encoder for Style-Based 3D GAN Inversion [115.82306502822412]
StyleGAN has achieved great progress in 2D face reconstruction and semantic editing via image inversion and latent editing.
A corresponding generic 3D GAN inversion framework is still missing, limiting the applications of 3D face reconstruction and semantic editing.
We study the challenging problem of 3D GAN inversion where a latent code is predicted given a single face image to faithfully recover its 3D shapes and detailed textures.
arXiv Detail & Related papers (2022-12-14T18:49:50Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - Learning 3D Face Reconstruction with a Pose Guidance Network [49.13404714366933]
We present a self-supervised learning approach to learning monocular 3D face reconstruction with a pose guidance network (PGN)
First, we unveil the bottleneck of pose estimation in prior parametric 3D face learning methods, and propose to utilize 3D face landmarks for estimating pose parameters.
With our specially designed PGN, our model can learn from both faces with fully labeled 3D landmarks and unlimited unlabeled in-the-wild face images.
arXiv Detail & Related papers (2020-10-09T06:11:17Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.