Augmentations vs Algorithms: What Works in Self-Supervised Learning
- URL: http://arxiv.org/abs/2403.05726v1
- Date: Fri, 8 Mar 2024 23:42:06 GMT
- Title: Augmentations vs Algorithms: What Works in Self-Supervised Learning
- Authors: Warren Morningstar, Alex Bijamov, Chris Duvarney, Luke Friedman, Neha
Kalibhat, Luyang Liu, Philip Mansfield, Renan Rojas-Gomez, Karan Singhal,
Bradley Green, Sushant Prakash
- Abstract summary: We study the relative effects of data augmentations, pretraining algorithms, and model architectures in Self-Supervised Learning (SSL)
We propose a new framework which unifies many seemingly disparate SSL methods into a single shared template.
- Score: 9.194402355758164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the relative effects of data augmentations, pretraining algorithms,
and model architectures in Self-Supervised Learning (SSL). While the recent
literature in this space leaves the impression that the pretraining algorithm
is of critical importance to performance, understanding its effect is
complicated by the difficulty in making objective and direct comparisons
between methods. We propose a new framework which unifies many seemingly
disparate SSL methods into a single shared template. Using this framework, we
identify aspects in which methods differ and observe that in addition to
changing the pretraining algorithm, many works also use new data augmentations
or more powerful model architectures. We compare several popular SSL methods
using our framework and find that many algorithmic additions, such as
prediction networks or new losses, have a minor impact on downstream task
performance (often less than $1\%$), while enhanced augmentation techniques
offer more significant performance improvements ($2-4\%$). Our findings
challenge the premise that SSL is being driven primarily by algorithmic
improvements, and suggest instead a bitter lesson for SSL: that augmentation
diversity and data / model scale are more critical contributors to recent
advances in self-supervised learning.
Related papers
- On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised Learning [18.318758111829386]
We propose an efficient single-branch SSL method based on non-parametric instance discrimination.
We also propose a novel self-distillation loss that minimizes the KL divergence between the probability distribution and its square root version.
arXiv Detail & Related papers (2024-04-30T06:39:04Z) - Evolutionary Augmentation Policy Optimization for Self-supervised
Learning [10.087678954934155]
Self-supervised learning is a machine learning algorithm for pretraining Deep Neural Networks (DNNs) without requiring manually labeled data.
In this paper, we study the contribution of augmentation operators on the performance of self supervised learning algorithms.
arXiv Detail & Related papers (2023-03-02T21:16:53Z) - A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends [82.64268080902742]
Self-supervised learning (SSL) aims to learn discriminative features from unlabeled data without relying on human-annotated labels.
SSL has garnered significant attention recently, leading to the development of numerous related algorithms.
This paper presents a review of diverse SSL methods, encompassing algorithmic aspects, application domains, three key trends, and open research questions.
arXiv Detail & Related papers (2023-01-13T14:41:05Z) - Weighted Ensemble Self-Supervised Learning [67.24482854208783]
Ensembling has proven to be a powerful technique for boosting model performance.
We develop a framework that permits data-dependent weighted cross-entropy losses.
Our method outperforms both in multiple evaluation metrics on ImageNet-1K.
arXiv Detail & Related papers (2022-11-18T02:00:17Z) - Improving Contrastive Learning with Model Augmentation [123.05700988581806]
The sequential recommendation aims at predicting the next items in user behaviors, which can be solved by characterizing item relationships in sequences.
Due to the data sparsity and noise issues in sequences, a new self-supervised learning (SSL) paradigm is proposed to improve the performance.
arXiv Detail & Related papers (2022-03-25T06:12:58Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
Self-supervised learning has achieved great success in learning visual representations without data annotations.
We introduce a novel relational SSL paradigm that learns representations by modeling the relationship between different instances.
Our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency.
arXiv Detail & Related papers (2021-07-20T06:53:07Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.