Conservative DDPG -- Pessimistic RL without Ensemble
- URL: http://arxiv.org/abs/2403.05732v2
- Date: Sun, 2 Jun 2024 19:40:48 GMT
- Title: Conservative DDPG -- Pessimistic RL without Ensemble
- Authors: Nitsan Soffair, Shie Mannor,
- Abstract summary: DDPG is hindered by the overestimation bias problem.
Traditional solutions to this bias involve ensemble-based methods.
We propose a straightforward solution using a $Q$-target and incorporating a behavioral cloning (BC) loss penalty.
- Score: 48.61228614796803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DDPG is hindered by the overestimation bias problem, wherein its $Q$-estimates tend to overstate the actual $Q$-values. Traditional solutions to this bias involve ensemble-based methods, which require significant computational resources, or complex log-policy-based approaches, which are difficult to understand and implement. In contrast, we propose a straightforward solution using a $Q$-target and incorporating a behavioral cloning (BC) loss penalty. This solution, acting as an uncertainty measure, can be easily implemented with minimal code and without the need for an ensemble. Our empirical findings strongly support the superiority of Conservative DDPG over DDPG across various MuJoCo and Bullet tasks. We consistently observe better performance in all evaluated tasks and even competitive or superior performance compared to TD3 and TD7, all achieved with significantly reduced computational requirements.
Related papers
- Scalable 3D Registration via Truncated Entry-wise Absolute Residuals [65.04922801371363]
A $3$D registration approach can process more than ten million ($107$) point pairs with over $99%$ random outliers.
We call our method TEAR, as it involves minimizing an outlier-robust loss that computes Truncated Entry-wise Absolute Residuals.
arXiv Detail & Related papers (2024-04-01T04:43:39Z) - Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks [78.2700757742992]
Projected Gradient Descent (PGD) is one of the most effective and conceptually simple algorithms to generate such adversaries.
We experimentally verify this assertion on a synthetic-data example and by evaluating our proposed method across 25 different $ell_infty$-robust models and 3 datasets.
Our strongest adversarial attack outperforms all of the white-box components of AutoAttack ensemble.
arXiv Detail & Related papers (2022-12-15T17:44:31Z) - Dealing with Sparse Rewards in Continuous Control Robotics via
Heavy-Tailed Policies [64.2210390071609]
We present a novel Heavy-Tailed Policy Gradient (HT-PSG) algorithm to deal with the challenges of sparse rewards in continuous control problems.
We show consistent performance improvement across all tasks in terms of high average cumulative reward.
arXiv Detail & Related papers (2022-06-12T04:09:39Z) - Revisiting Gaussian mixture critics in off-policy reinforcement
learning: a sample-based approach [28.199348547856175]
This paper revisits a natural alternative that removes the requirement of prior knowledge about the minimum and values a policy can attain.
It achieves state-of-the-art performance on a variety of challenging tasks.
arXiv Detail & Related papers (2022-04-21T16:44:47Z) - Implicitly Regularized RL with Implicit Q-Values [42.87920755961722]
The $Q$-function is a central quantity in many Reinforcement Learning (RL) algorithms for which RL agents behave following a (soft)-greedy policy.
We propose to parametrize the $Q$-function implicitly, as the sum of a log-policy and of a value function.
We derive a practical off-policy deep RL algorithm, suitable for large action spaces, and that enforces the softmax relation between the policy and the $Q$-value.
arXiv Detail & Related papers (2021-08-16T12:20:47Z) - Multiagent Rollout and Policy Iteration for POMDP with Application to
Multi-Robot Repair Problems [1.6939372704265414]
We consider infinite horizon discounted dynamic programming problems with finite state and control spaces, partial state observations, and a multiagent structure.
Our methods specifically address the computational challenges of partially observable multiagent problems.
arXiv Detail & Related papers (2020-11-09T06:51:50Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Zeroth-order Deterministic Policy Gradient [116.87117204825105]
We introduce Zeroth-order Deterministic Policy Gradient (ZDPG)
ZDPG approximates policy-reward gradients via two-point evaluations of the $Q$function.
New finite sample complexity bounds for ZDPG improve upon existing results by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-12T16:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.