Forecasting Electricity Market Signals via Generative AI
- URL: http://arxiv.org/abs/2403.05743v4
- Date: Fri, 28 Jun 2024 03:17:12 GMT
- Title: Forecasting Electricity Market Signals via Generative AI
- Authors: Xinyi Wang, Qing Zhao, Lang Tong,
- Abstract summary: This paper presents a generative artificial intelligence approach to probabilistic forecasting of electricity market signals.
Inspired by the Wiener-Kallianpur innovation representation of nonparametric time series, we propose a weak innovation autoencoder architecture and a novel deep learning algorithm.
The validity of the proposed approach is established by proving that, under ideal training conditions, the generated samples have the same conditional probability distribution as that of the ground truth.
- Score: 41.99446024585741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a generative artificial intelligence approach to probabilistic forecasting of electricity market signals, such as real-time locational marginal prices and area control error signals. Inspired by the Wiener-Kallianpur innovation representation of nonparametric time series, we propose a weak innovation autoencoder architecture and a novel deep learning algorithm that extracts the canonical independent and identically distributed innovation sequence of the time series, from which samples of future time series are generated. The validity of the proposed approach is established by proving that, under ideal training conditions, the generated samples have the same conditional probability distribution as that of the ground truth. Three applications involving highly dynamic and volatile time series in real-time market operations are considered: (i) locational marginal price forecasting for self-scheduled resources such as battery storage participants, (ii) interregional price spread forecasting for virtual bidders in interchange markets, and (iii) area control error forecasting for frequency regulations. Numerical studies based on market data from multiple independent system operators demonstrate the superior performance of the proposed generative forecaster over leading classical and modern machine learning techniques under both probabilistic and point forecasting metrics.
Related papers
- On the use of Probabilistic Forecasting for Network Analysis in Open RAN [2.7599595576304963]
Probability forecasting techniques provide a range of possible outcomes and associated probabilities.
We propose the use of probabilistic forecasting techniques as a radio App (rApp) within the Open RAN architecture.
arXiv Detail & Related papers (2024-07-19T15:03:38Z) - On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices [41.94295877935867]
We propose a novel approach to PEPF, extending the state of the art neural networks ensembles based methods through conformal inference based techniques.
Experiments have been conducted on multiple market regions, achieving day-ahead forecasts with improved hourly coverage and stable probabilistic scores.
arXiv Detail & Related papers (2024-04-03T13:22:47Z) - Generative Probabilistic Time Series Forecasting and Applications in
Grid Operations [47.19756484695248]
Generative probabilistic forecasting produces future time series samples according to the conditional probability distribution given past time series observations.
We propose a weak innovation autoencoder architecture and a learning algorithm to extract independent and identically distributed innovation sequences.
We show that the weak innovation sequence is Bayesian sufficient, which makes the proposed weak innovation autoencoder a canonical architecture for generative probabilistic forecasting.
arXiv Detail & Related papers (2024-02-21T15:23:21Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Non-parametric Probabilistic Time Series Forecasting via Innovations
Representation [29.255644836978956]
Probabilistic time series forecasting predicts the conditional probability distributions of the time series at a future time given past realizations.
Existing approaches are primarily based on parametric or semi-parametric time-series models that are restrictive, difficult to validate, and challenging to adapt to varying conditions.
This paper proposes a nonparametric method based on the classic notion of em innovations pioneered by Norbert Wiener and Gopinath Kallianpur.
arXiv Detail & Related papers (2023-06-05T02:24:59Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Deep Distributional Time Series Models and the Probabilistic Forecasting
of Intraday Electricity Prices [0.0]
We propose two approaches to constructing deep time series probabilistic models.
The first is where the output layer of the ESN has disturbances and a shrinkage prior for additional regularization.
The second approach employs the implicit copula of an ESN with Gaussian disturbances, which is a deep copula process on the feature space.
arXiv Detail & Related papers (2020-10-05T08:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.