Decoupled Data Consistency with Diffusion Purification for Image Restoration
- URL: http://arxiv.org/abs/2403.06054v5
- Date: Wed, 29 May 2024 00:09:08 GMT
- Title: Decoupled Data Consistency with Diffusion Purification for Image Restoration
- Authors: Xiang Li, Soo Min Kwon, Ismail R. Alkhouri, Saiprasad Ravishankar, Qing Qu,
- Abstract summary: We propose a novel diffusion-based image restoration solver that addresses issues by decoupling the reverse process from the data consistency steps.
Our approach demonstrates versatility, making it highly adaptable for efficient problem-solving in latent space.
The efficacy of our approach is validated through comprehensive experiments across various image restoration tasks, including image denoising, deblurring, inpainting, and super-resolution.
- Score: 15.043002968696978
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion models have recently gained traction as a powerful class of deep generative priors, excelling in a wide range of image restoration tasks due to their exceptional ability to model data distributions. To solve image restoration problems, many existing techniques achieve data consistency by incorporating additional likelihood gradient steps into the reverse sampling process of diffusion models. However, the additional gradient steps pose a challenge for real-world practical applications as they incur a large computational overhead, thereby increasing inference time. They also present additional difficulties when using accelerated diffusion model samplers, as the number of data consistency steps is limited by the number of reverse sampling steps. In this work, we propose a novel diffusion-based image restoration solver that addresses these issues by decoupling the reverse process from the data consistency steps. Our method involves alternating between a reconstruction phase to maintain data consistency and a refinement phase that enforces the prior via diffusion purification. Our approach demonstrates versatility, making it highly adaptable for efficient problem-solving in latent space. Additionally, it reduces the necessity for numerous sampling steps through the integration of consistency models. The efficacy of our approach is validated through comprehensive experiments across various image restoration tasks, including image denoising, deblurring, inpainting, and super-resolution.
Related papers
- Gaussian is All You Need: A Unified Framework for Solving Inverse Problems via Diffusion Posterior Sampling [16.683393726483978]
Diffusion models can generate a variety of high-quality images by modeling complex data distributions.
Most of the existing diffusion-based methods integrate data consistency steps within the diffusion reverse sampling process.
We show that the existing approximations are either insufficient or computationally inefficient.
arXiv Detail & Related papers (2024-09-13T15:20:03Z) - SpotDiffusion: A Fast Approach For Seamless Panorama Generation Over Time [7.532695984765271]
We present a novel approach to generate high-resolution images with generative models.
Our method shifts non-overlapping denoising windows over time, ensuring that seams in one timestep are corrected in the next.
Our method offers several key benefits, including improved computational efficiency and faster inference times.
arXiv Detail & Related papers (2024-07-22T09:44:35Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction [4.227116189483428]
This study introduces a novel Cascaded Diffusion with Discrepancy Mitigation framework.
It includes the low-quality image generation in latent space and the high-quality image generation in pixel space.
It minimizes computational costs by moving some inference steps from pixel space to latent space.
arXiv Detail & Related papers (2024-03-14T12:58:28Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
This study proposes a novel and efficient diffusion model for image restoration.
Our method avoids the need for post-acceleration during inference, thereby avoiding the associated performance deterioration.
Our method achieves superior or comparable performance to current state-of-the-art methods on three classical IR tasks.
arXiv Detail & Related papers (2024-03-12T05:06:07Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster
Image Generation [49.3016007471979]
Large generative diffusion models have revolutionized text-to-image generation and offer immense potential for conditional generation tasks.
However, their widespread adoption is hindered by the high computational cost, which limits their real-time application.
We introduce a novel method dubbed CoDi, that adapts a pre-trained latent diffusion model to accept additional image conditioning inputs.
arXiv Detail & Related papers (2023-10-02T17:59:18Z) - PGDiff: Guiding Diffusion Models for Versatile Face Restoration via
Partial Guidance [65.5618804029422]
Previous works have achieved noteworthy success by limiting the solution space using explicit degradation models.
We propose PGDiff by introducing partial guidance, a fresh perspective that is more adaptable to real-world degradations.
Our method not only outperforms existing diffusion-prior-based approaches but also competes favorably with task-specific models.
arXiv Detail & Related papers (2023-09-19T17:51:33Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
Training diffusion models in the pixel space are both data-intensive and computationally demanding.
Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges.
We propose textitReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models.
arXiv Detail & Related papers (2023-07-16T18:42:01Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.