Harmonious Group Choreography with Trajectory-Controllable Diffusion
- URL: http://arxiv.org/abs/2403.06189v3
- Date: Wed, 14 Aug 2024 02:38:55 GMT
- Title: Harmonious Group Choreography with Trajectory-Controllable Diffusion
- Authors: Yuqin Dai, Wanlu Zhu, Ronghui Li, Zeping Ren, Xiangzheng Zhou, Xiu Li, Jun Li, Jian Yang,
- Abstract summary: Trajectory-Controllable Diffusion (TCDiff) is a novel approach that harnesses non-overlapping trajectories to facilitate coherent dance movements.
To tackle dancer collisions, we introduce a Dance-Beat Navigator capable of generating trajectories for multiple dancers based on the music.
To mitigate foot sliding, we present a Footwork Adaptor that utilizes trajectory displacement from adjacent frames to enable flexible footwork.
- Score: 28.82215057058883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creating group choreography from music has gained attention in cultural entertainment and virtual reality, aiming to coordinate visually cohesive and diverse group movements. Despite increasing interest, recent works face challenges in achieving aesthetically appealing choreography, primarily for two key issues: multi-dancer collision and single-dancer foot slide. To address these issues, we propose a Trajectory-Controllable Diffusion (TCDiff), a novel approach that harnesses non-overlapping trajectories to facilitate coherent dance movements. Specifically, to tackle dancer collisions, we introduce a Dance-Beat Navigator capable of generating trajectories for multiple dancers based on the music, complemented by a Distance-Consistency loss to maintain appropriate spacing among trajectories within a reasonable threshold. To mitigate foot sliding, we present a Footwork Adaptor that utilizes trajectory displacement from adjacent frames to enable flexible footwork, coupled with a Relative Forward-Kinematic loss to adjust the positioning of individual dancers' root nodes and joints. Extensive experiments demonstrate that our method achieves state-of-the-art results.
Related papers
- Duolando: Follower GPT with Off-Policy Reinforcement Learning for Dance Accompaniment [87.20240797625648]
We introduce a novel task within the field of 3D dance generation, termed dance accompaniment.
It requires the generation of responsive movements from a dance partner, the "follower", synchronized with the lead dancer's movements and the underlying musical rhythm.
We propose a GPT-based model, Duolando, which autoregressively predicts the subsequent tokenized motion conditioned on the coordinated information of the music, the leader's and the follower's movements.
arXiv Detail & Related papers (2024-03-27T17:57:02Z) - Lodge: A Coarse to Fine Diffusion Network for Long Dance Generation Guided by the Characteristic Dance Primitives [50.37531720524434]
We propose Lodge, a network capable of generating extremely long dance sequences conditioned on given music.
Our approach can parallelly generate dance sequences of extremely long length, striking a balance between global choreographic patterns and local motion quality and expressiveness.
arXiv Detail & Related papers (2024-03-15T17:59:33Z) - Controllable Group Choreography using Contrastive Diffusion [9.524877757674176]
Music-driven group choreography holds significant potential for a wide range of industrial applications.
We introduce a Group Contrastive Diffusion (GCD) strategy to enhance the connection between dancers and their group.
We demonstrate the effectiveness of our approach in producing visually captivating and consistent group dance motions.
arXiv Detail & Related papers (2023-10-29T11:59:12Z) - DiffDance: Cascaded Human Motion Diffusion Model for Dance Generation [89.50310360658791]
We present a novel cascaded motion diffusion model, DiffDance, designed for high-resolution, long-form dance generation.
This model comprises a music-to-dance diffusion model and a sequence super-resolution diffusion model.
We demonstrate that DiffDance is capable of generating realistic dance sequences that align effectively with the input music.
arXiv Detail & Related papers (2023-08-05T16:18:57Z) - BRACE: The Breakdancing Competition Dataset for Dance Motion Synthesis [123.73677487809418]
We introduce a new dataset aiming to challenge common assumptions in dance motion synthesis.
We focus on breakdancing which features acrobatic moves and tangled postures.
Our efforts produced the BRACE dataset, which contains over 3 hours and 30 minutes of densely annotated poses.
arXiv Detail & Related papers (2022-07-20T18:03:54Z) - Bailando: 3D Dance Generation by Actor-Critic GPT with Choreographic
Memory [92.81383016482813]
We propose a novel music-to-dance framework, Bailando, for driving 3D characters to dance following a piece of music.
We introduce an actor-critic Generative Pre-trained Transformer (GPT) that composes units to a fluent dance coherent to the music.
Our proposed framework achieves state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-03-24T13:06:43Z) - Music-to-Dance Generation with Optimal Transport [48.92483627635586]
We propose a Music-to-Dance with Optimal Transport Network (MDOT-Net) for learning to generate 3D dance choreographs from music.
We introduce an optimal transport distance for evaluating the authenticity of the generated dance distribution and a Gromov-Wasserstein distance to measure the correspondence between the dance distribution and the input music.
arXiv Detail & Related papers (2021-12-03T09:37:26Z) - DanceFormer: Music Conditioned 3D Dance Generation with Parametric
Motion Transformer [23.51701359698245]
In this paper, we reformulate it by a two-stage process, ie, a key pose generation and then an in-between parametric motion curve prediction.
We propose a large-scale music conditioned 3D dance dataset, called PhantomDance, that is accurately labeled by experienced animators.
Experiments demonstrate that the proposed method, even trained by existing datasets, can generate fluent, performative, and music-matched 3D dances.
arXiv Detail & Related papers (2021-03-18T12:17:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.