Adiabatic versus instantaneous transitions from a harmonic oscillator to an inverted oscillator
- URL: http://arxiv.org/abs/2403.06377v2
- Date: Wed, 19 Jun 2024 10:26:40 GMT
- Title: Adiabatic versus instantaneous transitions from a harmonic oscillator to an inverted oscillator
- Authors: Viktor V. Dodonov, Alexandre V. Dodonov,
- Abstract summary: Mean energy increases when the frequency returns to its initial value, and the increment coefficient is determined by the exponent in the power law of the frequency crossing zero.
If the frequency becomes imaginary, the absolute value of mean energy increases exponentially, even in the adiabatic regime.
Small corrections to the leading terms of simple adiabatic approximate formulas are crucial in this case, due to the unstable nature of the motion.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have obtained explicit analytical formulas for the mean energy and its variance (characterizing the energy fluctuations) of a quantum harmonic oscillator with time-dependent frequency in the adiabatic regimes after the frequency passes through zero. The behavior of energy turns out to be quite different in two cases: when the frequency remains real and when it becomes imaginary. In the first case, the mean energy always increases when the frequency returns to its initial value, and the increment coefficient is determined by the exponent in the power law of the frequency crossing zero. On the other hand, if the frequency becomes imaginary, the absolute value of mean energy increases exponentially, even in the adiabatic regime, unless the Hamiltonian becomes time independent. Small corrections to the leading terms of simple adiabatic approximate formulas are crucial in this case, due to the unstable nature of the motion.
Related papers
- Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Adiabatic amplification of energy and magnetic moment of a charged
particle after the magnetic field inversion [77.34726150561087]
We study the evolution of the energy and magnetic moment of a quantum charged particle placed in a homogeneous magnetic field.
We show that after a single magnetic field passage through zero value, the famous adiabatic invariant ratio of energy to frequency is reestablished again.
arXiv Detail & Related papers (2023-04-10T00:46:15Z) - Adiabatic amplification of the harmonic oscillator energy when the
frequency passes through zero [77.34726150561087]
After a single frequency passage through zero value, the famous adiabatic invariant ratio of energy to frequency is reestablished again.
The dependence on the initial state disappears after averaging over phases of initial states with the same energy.
The original Born-Fock theorem does not work after the frequency passes through zero.
arXiv Detail & Related papers (2023-03-15T01:18:55Z) - Initial value formulation of a quantum damped harmonic oscillator [0.18416014644193066]
We study the initial state-dependence, decoherence, and thermalization of a quantum damped harmonic oscillator.
We find that the dynamics must include a non-vanishing noise term to yield physical results for the purity.
We briefly consider time-nonlocal dissipation as well, to show that the fluctuation-dissipation relation is satisfied for a specific choice of dissipation kernels.
arXiv Detail & Related papers (2023-03-08T19:03:12Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Time-dependent quantum harmonic oscillator: a continuous route from
adiabatic to sudden changes [0.0]
We investigate how sudden or adiabatic is a change in the frequency of a quantum harmonic oscillator (HO)
The resulting state of the system is shown to be a vacuum squeezed state in two bases related by Bogoliubov transformations.
Our results shed some light on subtleties and common inaccuracies in the literature related to the interpretation of the adiabatic theorem for this system.
arXiv Detail & Related papers (2020-10-16T00:55:01Z) - Entanglement degradation of cavity modes due to the dynamical Casimir
effect [68.8204255655161]
We study the entanglement dynamics between two cavities when one of them is harmonically shaken in the context of quantum information theory.
We find four different depending on the frequency of the motion and the spectrum of the moving cavity.
arXiv Detail & Related papers (2020-07-13T18:57:31Z) - New Perspectives on the so-called Fermi's Golden Rule in Quantum
Mechanics including Adiabatic Following [0.0]
derivation of the Golden Rule of time dependent perturbation theory is presented.
derivation is based on adiabatic turning on of the perturbation as used in some formal developments of scattering theory.
arXiv Detail & Related papers (2020-06-23T17:30:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.