Towards verifications of Krylov complexity
- URL: http://arxiv.org/abs/2403.06391v2
- Date: Wed, 19 Jun 2024 00:20:38 GMT
- Title: Towards verifications of Krylov complexity
- Authors: Ryu Sasaki,
- Abstract summary: I present the exact and explicit expressions of the moments $mu_m$ for 16 quantum mechanical systems which are em exactly solvable both in the Schr"odinger and Heisenberg pictures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Krylov complexity is considered to provide a measure of the growth of operators evolving under Hamiltonian dynamics. The main strategy is the analysis of the structure of Krylov subspace $\mathcal{K}_M(\mathcal{H},\eta)$ spanned by the multiple applications of the Liouville operator $\mathcal{L}$ defined by the commutator in terms of a Hamiltonian $\mathcal{H}$, $\mathcal{L}:=[\mathcal{H},\cdot]$ acting on an operator $\eta$, $\mathcal{K}_M(\mathcal{H},\eta)=\text{span}\{\eta,\mathcal{L}\eta,\ldots,\mathcal{L}^{M-1}\eta\}$. For a given inner product $(\cdot,\cdot)$ of the operators, the orthonormal basis $\{\mathcal{O}_n\}$ is constructed from $\mathcal{O}_0=\eta/\sqrt{(\eta,\eta)}$ by Lanczos algorithm. The moments $\mu_m=(\mathcal{O}_0,\mathcal{L}^m\mathcal{O}_0)$ are closely related to the important data $\{b_n\}$ called Lanczos coefficients. I present the exact and explicit expressions of the moments $\{\mu_m\}$ for 16 quantum mechanical systems which are {\em exactly solvable both in the Schr\"odinger and Heisenberg pictures}. The operator $\eta$ is the variable of the eigenpolynomials. Among them six systems show a clear sign of `non-complexity' as vanishing higher Lanczos coefficients $b_m=0$, $m\ge3$.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Completely Bounded Norms of $k$-positive Maps [41.78224056793453]
Given an operator system $mathcalS$, we define the parameters $r_k(mathcalS)$ (resp. $d_k(mathcalS)$)
We show that the sequence $(r_k( mathcalS))$ tends to $1$ if and only if $mathcalS$ is exact and that the sequence $(d_k(mathcalS))$ tends to $1$ if and only if $mathcalS$ has the lifting
arXiv Detail & Related papers (2024-01-22T20:37:14Z) - On Machine Learning Knowledge Representation In The Form Of Partially
Unitary Operator. Knowledge Generalizing Operator [0.0]
A new form of ML knowledge representation with high generalization power is developed and implemented numerically.
$mathcalU$ can be considered as a $mathitIN$ to $mathitOUT$ quantum channel.
arXiv Detail & Related papers (2022-12-22T06:29:27Z) - $\mathcal{P}\mathcal{T}$-symmetric $-g\varphi^4$ theory [0.0]
Hermitian theory is proposed: $log ZmathcalPmathcalT(g)=textstylefrac12 log Z_rm Herm(-g+rm i 0+rm i 0+$.
A new conjectural relation between the Euclidean partition functions $ZmathcalPmathcalT$-symmetric theory and $Z_rm Herm(lambda)$ of the $lambda varphi4$ is presented.
arXiv Detail & Related papers (2022-09-16T12:44:00Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss
Embeddings of Low-Dimensional Submanifolds of $\mathbb{R}^N$ [0.24366811507669117]
Let $mathcalM$ be a compact $d$-dimensional submanifold of $mathbbRN$ with reach $tau$ and volume $V_mathcal M$.
We prove that a nonlinear function $f: mathbbRN rightarrow mathbbRmm exists with $m leq C left(d / epsilon2right) log left(fracsqrt[d]V_math
arXiv Detail & Related papers (2022-06-07T15:10:46Z) - Uncertainties in Quantum Measurements: A Quantum Tomography [52.77024349608834]
The observables associated with a quantum system $S$ form a non-commutative algebra $mathcal A_S$.
It is assumed that a density matrix $rho$ can be determined from the expectation values of observables.
Abelian algebras do not have inner automorphisms, so the measurement apparatus can determine mean values of observables.
arXiv Detail & Related papers (2021-12-14T16:29:53Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - Topological entanglement and hyperbolic volume [1.1909611351044664]
Chern-Simons theory provides setting to visualise the $m$-moment of reduced density matrix as a three-manifold invariant $Z(M_mathcalK_m)$.
For SU(2) group, we show that $Z(M_mathcalK_m)$ can grow at mostly in $k$.
We conjecture that $ln Z(M_mathcalK_m)$ is the hyperbolic volume of the knot complement $S3backslash mathcalK_m
arXiv Detail & Related papers (2021-06-07T07:51:03Z) - Linear Bandits on Uniformly Convex Sets [88.3673525964507]
Linear bandit algorithms yield $tildemathcalO(nsqrtT)$ pseudo-regret bounds on compact convex action sets.
Two types of structural assumptions lead to better pseudo-regret bounds.
arXiv Detail & Related papers (2021-03-10T07:33:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.