DivCon: Divide and Conquer for Progressive Text-to-Image Generation
- URL: http://arxiv.org/abs/2403.06400v2
- Date: Fri, 16 Aug 2024 17:13:02 GMT
- Title: DivCon: Divide and Conquer for Progressive Text-to-Image Generation
- Authors: Yuhao Jia, Wenhan Tan,
- Abstract summary: Diffusion-driven text-to-image (T2I) generation has achieved remarkable advancements.
layout is employed as an intermedium to bridge large language models and layout-based diffusion models.
We introduce a divide-and-conquer approach which decouples the T2I generation task into simple subtasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-driven text-to-image (T2I) generation has achieved remarkable advancements. To further improve T2I models' capability in numerical and spatial reasoning, the layout is employed as an intermedium to bridge large language models and layout-based diffusion models. However, these methods still struggle with generating images from textural prompts with multiple objects and complicated spatial relationships. To tackle this challenge, we introduce a divide-and-conquer approach which decouples the T2I generation task into simple subtasks. Our approach divides the layout prediction stage into numerical & spatial reasoning and bounding box prediction. Then, the layout-to-image generation stage is conducted in an iterative manner to reconstruct objects from easy ones to difficult ones. We conduct experiments on the HRS and NSR-1K benchmarks and our approach outperforms previous state-of-the-art models with notable margins. In addition, visual results demonstrate that our approach significantly improves the controllability and consistency in generating multiple objects from complex textural prompts.
Related papers
- Generating Intermediate Representations for Compositional Text-To-Image Generation [16.757550214291015]
We propose a compositional approach for text-to-image generation based on two stages.
In the first stage, we design a diffusion-based generative model to produce one or more aligned intermediate representations conditioned on text.
In the second stage, we map these representations, together with the text, to the final output image using a separate diffusion-based generative model.
arXiv Detail & Related papers (2024-10-13T10:24:55Z) - Referee Can Play: An Alternative Approach to Conditional Generation via
Model Inversion [35.21106030549071]
Diffusion Probabilistic Models (DPMs) are dominant force in text-to-image generation tasks.
We propose an alternative view of state-of-the-art DPMs as a way of inverting advanced Vision-Language Models (VLMs)
By directly optimizing images with the supervision of discriminative VLMs, the proposed method can potentially achieve a better text-image alignment.
arXiv Detail & Related papers (2024-02-26T05:08:40Z) - Direct Consistency Optimization for Compositional Text-to-Image
Personalization [73.94505688626651]
Text-to-image (T2I) diffusion models, when fine-tuned on a few personal images, are able to generate visuals with a high degree of consistency.
We propose to fine-tune the T2I model by maximizing consistency to reference images, while penalizing the deviation from the pretrained model.
arXiv Detail & Related papers (2024-02-19T09:52:41Z) - Reason out Your Layout: Evoking the Layout Master from Large Language
Models for Text-to-Image Synthesis [47.27044390204868]
We introduce a novel approach to improving T2I diffusion models using Large Language Models (LLMs) as layout generators.
Our experiments demonstrate significant improvements in image quality and layout accuracy.
arXiv Detail & Related papers (2023-11-28T14:51:13Z) - R&B: Region and Boundary Aware Zero-shot Grounded Text-to-image
Generation [74.5598315066249]
We probe into zero-shot grounded T2I generation with diffusion models.
We propose a Region and Boundary (R&B) aware cross-attention guidance approach.
arXiv Detail & Related papers (2023-10-13T05:48:42Z) - SSMG: Spatial-Semantic Map Guided Diffusion Model for Free-form
Layout-to-Image Generation [68.42476385214785]
We propose a novel Spatial-Semantic Map Guided (SSMG) diffusion model that adopts the feature map, derived from the layout, as guidance.
SSMG achieves superior generation quality with sufficient spatial and semantic controllability compared to previous works.
We also propose the Relation-Sensitive Attention (RSA) and Location-Sensitive Attention (LSA) mechanisms.
arXiv Detail & Related papers (2023-08-20T04:09:12Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
This work proposes to enhance prompt understanding capabilities in text-to-image diffusion models.
Our method leverages a pretrained large language model for grounded generation in a novel two-stage process.
Our method significantly outperforms the base diffusion model and several strong baselines in accurately generating images.
arXiv Detail & Related papers (2023-05-23T03:59:06Z) - Aggregated Contextual Transformations for High-Resolution Image
Inpainting [57.241749273816374]
We propose an enhanced GAN-based model, named Aggregated COntextual-Transformation GAN (AOT-GAN) for high-resolution image inpainting.
To enhance context reasoning, we construct the generator of AOT-GAN by stacking multiple layers of a proposed AOT block.
For improving texture synthesis, we enhance the discriminator of AOT-GAN by training it with a tailored mask-prediction task.
arXiv Detail & Related papers (2021-04-03T15:50:17Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
We develop a layout-to-image-generation method to generate complex scenes with multiple objects.
Our method learns representations of the spatial relationships between objects in the scene, which lead to our model's improved layout-fidelity.
We introduce SceneFID, an object-centric adaptation of the popular Fr'echet Inception Distance metric, that is better suited for multi-object images.
arXiv Detail & Related papers (2020-03-16T21:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.