A Logical Pattern Memory Pre-trained Model for Entailment Tree
Generation
- URL: http://arxiv.org/abs/2403.06410v1
- Date: Mon, 11 Mar 2024 03:45:09 GMT
- Title: A Logical Pattern Memory Pre-trained Model for Entailment Tree
Generation
- Authors: Li Yuan, Yi Cai, Haopeng Ren, Jiexin Wang
- Abstract summary: Generating coherent and credible explanations remains a significant challenge in the field of AI.
We propose the logical pattern memory pre-trained model (LMPM)
Our model produces more coherent and reasonable conclusions that closely align with the underlying premises.
- Score: 23.375260036179252
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generating coherent and credible explanations remains a significant challenge
in the field of AI. In recent years, researchers have delved into the
utilization of entailment trees to depict explanations, which exhibit a
reasoning process of how a hypothesis is deduced from the supporting facts.
However, existing models often overlook the importance of generating
intermediate conclusions with logical consistency from the given facts, leading
to inaccurate conclusions and undermining the overall credibility of entailment
trees. To address this limitation, we propose the logical pattern memory
pre-trained model (LMPM). LMPM incorporates an external memory structure to
learn and store the latent representations of logical patterns, which aids in
generating logically consistent conclusions. Furthermore, to mitigate the
influence of logically irrelevant domain knowledge in the Wikipedia-based data,
we introduce an entity abstraction approach to construct the dataset for
pre-training LMPM. The experimental results highlight the effectiveness of our
approach in improving the quality of entailment tree generation. By leveraging
logical entailment patterns, our model produces more coherent and reasonable
conclusions that closely align with the underlying premises. Code and Data are
released at https://github.com/YuanLi95/T5-LMPM
Related papers
- P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains [97.25943550933829]
We present P-FOLIO, a human-annotated dataset consisting of diverse and complex reasoning chains.
We use P-FOLIO to evaluate and improve large-language-model (LLM) reasoning capabilities.
arXiv Detail & Related papers (2024-10-11T19:22:57Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Enhancing Systematic Decompositional Natural Language Inference Using Informal Logic [51.967603572656266]
We introduce a consistent and theoretically grounded approach to annotating decompositional entailment.
We find that our new dataset, RDTE, has a substantially higher internal consistency (+9%) than prior decompositional entailment datasets.
We also find that training an RDTE-oriented entailment classifier via knowledge distillation and employing it in an entailment tree reasoning engine significantly improves both accuracy and proof quality.
arXiv Detail & Related papers (2024-02-22T18:55:17Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models.
We develop a conversation cognitive model ( CCM) that explains how each utterance receives and activates channels of information.
By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds.
arXiv Detail & Related papers (2023-05-28T13:54:09Z) - Investigating the Robustness of Natural Language Generation from Logical
Forms via Counterfactual Samples [30.079030298066847]
State-of-the-art methods based on pre-trained models have achieved remarkable performance on the standard test dataset.
We question whether these methods really learn how to perform logical reasoning, rather than just relying on the spurious correlations between the headers of the tables and operators of the logical form.
We propose two approaches to reduce the model's reliance on the shortcut.
arXiv Detail & Related papers (2022-10-16T14:14:53Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
We propose an architecture called Iterative Retrieval-Generation Reasoner (IRGR)
Our model is able to explain a given hypothesis by systematically generating a step-by-step explanation from textual premises.
We outperform existing benchmarks on premise retrieval and entailment tree generation, with around 300% gain in overall correctness.
arXiv Detail & Related papers (2022-05-18T21:52:11Z) - Interpretable Data-Based Explanations for Fairness Debugging [7.266116143672294]
Gopher is a system that produces compact, interpretable, and causal explanations for bias or unexpected model behavior.
We introduce the concept of causal responsibility that quantifies the extent to which intervening on training data by removing or updating subsets of it can resolve the bias.
Building on this concept, we develop an efficient approach for generating the top-k patterns that explain model bias.
arXiv Detail & Related papers (2021-12-17T20:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.