A Differential Geometric View and Explainability of GNN on Evolving
Graphs
- URL: http://arxiv.org/abs/2403.06425v1
- Date: Mon, 11 Mar 2024 04:26:18 GMT
- Title: A Differential Geometric View and Explainability of GNN on Evolving
Graphs
- Authors: Yazheng Liu, Xi Zhang, Sihong Xie
- Abstract summary: Graphs are ubiquitous in social networks and biochemistry, where Graph Neural Networks (GNN) are the state-of-the-art models for prediction.
We propose a smooth parameterization of the GNN predicted distributions using axiomatic attribution.
Experiments on node classification, link prediction, and graph classification tasks with evolving graphs demonstrate the better sparsity, faithfulness, and intuitiveness of the proposed method.
- Score: 15.228139478280747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs are ubiquitous in social networks and biochemistry, where Graph Neural
Networks (GNN) are the state-of-the-art models for prediction. Graphs can be
evolving and it is vital to formally model and understand how a trained GNN
responds to graph evolution. We propose a smooth parameterization of the GNN
predicted distributions using axiomatic attribution, where the distributions
are on a low-dimensional manifold within a high-dimensional embedding space. We
exploit the differential geometric viewpoint to model distributional evolution
as smooth curves on the manifold. We reparameterize families of curves on the
manifold and design a convex optimization problem to find a unique curve that
concisely approximates the distributional evolution for human interpretation.
Extensive experiments on node classification, link prediction, and graph
classification tasks with evolving graphs demonstrate the better sparsity,
faithfulness, and intuitiveness of the proposed method over the
state-of-the-art methods.
Related papers
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - How Curvature Enhance the Adaptation Power of Framelet GCNs [27.831929635701886]
Graph neural network (GNN) has been demonstrated powerful in modeling graph-structured data.
This paper introduces a new approach to enhance GNN by discrete graph Ricci curvature.
We show that our curvature-based GNN model outperforms the state-of-the-art baselines in both homophily and heterophily graph datasets.
arXiv Detail & Related papers (2023-07-19T06:05:33Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - GRAND: Graph Neural Diffusion [15.00135729657076]
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process.
In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators.
Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes.
arXiv Detail & Related papers (2021-06-21T09:10:57Z) - Implicit Graph Neural Networks [46.0589136729616]
We propose a graph learning framework called Implicit Graph Neural Networks (IGNN)
IGNNs consistently capture long-range dependencies and outperform state-of-the-art GNN models.
arXiv Detail & Related papers (2020-09-14T06:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.