Temporal-Mapping Photography for Event Cameras
- URL: http://arxiv.org/abs/2403.06443v2
- Date: Tue, 12 Nov 2024 06:11:46 GMT
- Title: Temporal-Mapping Photography for Event Cameras
- Authors: Yuhan Bao, Lei Sun, Yuqin Ma, Kaiwei Wang,
- Abstract summary: Event cameras, or Dynamic Vision Sensors (DVS), capture brightness changes as a continuous stream of "events"
Converting sparse events to dense intensity frames faithfully has long been an ill-posed problem.
In this paper, for the first time, we realize events to dense intensity image conversion using a stationary event camera in static scenes.
- Score: 5.344756442054121
- License:
- Abstract: Event cameras, or Dynamic Vision Sensors (DVS) are novel neuromorphic sensors that capture brightness changes as a continuous stream of "events" rather than traditional intensity frames. Converting sparse events to dense intensity frames faithfully has long been an ill-posed problem. Previous methods have primarily focused on converting events to video in dynamic scenes or with a moving camera. In this paper, for the first time, we realize events to dense intensity image conversion using a stationary event camera in static scenes with a transmittance adjustment device for brightness modulation. Different from traditional methods that mainly rely on event integration, the proposed Event-Based Temporal Mapping Photography (EvTemMap) measures the time of event emitting for each pixel. Then, the resulting Temporal Matrix is converted to an intensity frame with a temporal mapping neural network. At the hardware level, the proposed EvTemMap is implemented by combining a transmittance adjustment device with a DVS, named Adjustable Transmittance Dynamic Vision Sensor (AT-DVS). Additionally, we collected TemMat dataset under various conditions including low-light and high dynamic range scenes. The experimental results showcase the high dynamic range, fine-grained details, and high-grayscale resolution of the proposed EvTemMap. The code and dataset are available in https://github.com/YuHanBaozju/EvTemMap
Related papers
- EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - Seeing Motion at Nighttime with an Event Camera [17.355331119296782]
Event cameras react to dynamic with higher temporal resolution (microsecond) and higher dynamic range (120dB)
We propose a nighttime event reconstruction network (NER-Net) which mainly includes a learnable event timestamps calibration module (LETC)
We construct a paired real-light event dataset (RLED) through a co-axial imaging, including 64,200 spatially and temporally aligned image GTs and low-light events.
arXiv Detail & Related papers (2024-04-18T03:58:27Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed.
This paper focuses on five event-aided image and video enhancement tasks.
arXiv Detail & Related papers (2023-12-13T15:42:04Z) - Event-based Continuous Color Video Decompression from Single Frames [38.59798259847563]
We present ContinuityCam, a novel approach to generate a continuous video from a single static RGB image, using an event camera.
Our approach combines continuous long-range motion modeling with a feature-plane-based neural integration model, enabling frame prediction at arbitrary times within the events.
arXiv Detail & Related papers (2023-11-30T18:59:23Z) - Event-based Image Deblurring with Dynamic Motion Awareness [10.81953574179206]
We introduce the first dataset containing pairs of real RGB blur images and related events during the exposure time.
Our results show better robustness overall when using events, with improvements in PSNR by up to 1.57dB on synthetic data and 1.08 dB on real event data.
arXiv Detail & Related papers (2022-08-24T09:39:55Z) - MEFNet: Multi-scale Event Fusion Network for Motion Deblurring [62.60878284671317]
Traditional frame-based cameras inevitably suffer from motion blur due to long exposure times.
As a kind of bio-inspired camera, the event camera records the intensity changes in an asynchronous way with high temporal resolution.
In this paper, we rethink the event-based image deblurring problem and unfold it into an end-to-end two-stage image restoration network.
arXiv Detail & Related papers (2021-11-30T23:18:35Z) - ESL: Event-based Structured Light [62.77144631509817]
Event cameras are bio-inspired sensors providing significant advantages over standard cameras.
We propose a novel structured-light system using an event camera to tackle the problem of accurate and high-speed depth sensing.
arXiv Detail & Related papers (2021-11-30T15:47:39Z) - Combining Events and Frames using Recurrent Asynchronous Multimodal
Networks for Monocular Depth Prediction [51.072733683919246]
We introduce Recurrent Asynchronous Multimodal (RAM) networks to handle asynchronous and irregular data from multiple sensors.
Inspired by traditional RNNs, RAM networks maintain a hidden state that is updated asynchronously and can be queried at any time to generate a prediction.
We show an improvement over state-of-the-art methods by up to 30% in terms of mean depth absolute error.
arXiv Detail & Related papers (2021-02-18T13:24:35Z) - Asynchronous Corner Tracking Algorithm based on Lifetime of Events for
DAVIS Cameras [0.9988653233188148]
Event cameras, i.e., the Dynamic and Active-pixel Vision Sensor (DAVIS) ones, capture the intensity changes in the scene and generates a stream of events in an asynchronous fashion.
The output rate of such cameras can reach up to 10 million events per second in high dynamic environments.
A novel asynchronous corner tracking method is proposed that uses both events and intensity images captured by a DAVIS camera.
arXiv Detail & Related papers (2020-10-29T12:02:40Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.