Tactical Decision Making for Autonomous Trucks by Deep Reinforcement
Learning with Total Cost of Operation Based Reward
- URL: http://arxiv.org/abs/2403.06524v1
- Date: Mon, 11 Mar 2024 08:58:42 GMT
- Title: Tactical Decision Making for Autonomous Trucks by Deep Reinforcement
Learning with Total Cost of Operation Based Reward
- Authors: Deepthi Pathare, Leo Laine, Morteza Haghir Chehreghani
- Abstract summary: We develop a deep reinforcement learning framework for tactical decision making in an autonomous truck.
Our results demonstrate that it is beneficial to separate high-level decision-making processes and low-level control actions.
- Score: 4.404496835736175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a deep reinforcement learning framework for tactical decision
making in an autonomous truck, specifically for Adaptive Cruise Control (ACC)
and lane change maneuvers in a highway scenario. Our results demonstrate that
it is beneficial to separate high-level decision-making processes and low-level
control actions between the reinforcement learning agent and the low-level
controllers based on physical models. In the following, we study optimizing the
performance with a realistic and multi-objective reward function based on Total
Cost of Operation (TCOP) of the truck using different approaches; by adding
weights to reward components, by normalizing the reward components and by using
curriculum learning techniques.
Related papers
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Research on Autonomous Driving Decision-making Strategies based Deep Reinforcement Learning [8.794428617785869]
Behavior decision-making subsystem is a key component of the autonomous driving system.
In this work, an advanced deep reinforcement learning model is adopted, which can autonomously learn and optimize driving strategies.
arXiv Detail & Related papers (2024-08-06T10:24:54Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
We propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF)
Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs.
We also exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks.
arXiv Detail & Related papers (2022-08-04T04:35:53Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Spatiotemporal Costmap Inference for MPC via Deep Inverse Reinforcement
Learning [27.243603228431564]
We propose a new IRLRL algorithm that learns a goal-conditionedtemporal reward function.
The resulting costmap is used by Model Predictive Controllers (MPCs) to perform a task.
arXiv Detail & Related papers (2022-01-17T17:36:29Z) - Curriculum Learning for Safe Mapless Navigation [71.55718344087657]
This work investigates the effects of Curriculum Learning (CL)-based approaches on the agent's performance.
In particular, we focus on the safety aspect of robotic mapless navigation, comparing over a standard end-to-end (E2E) training strategy.
arXiv Detail & Related papers (2021-12-23T12:30:36Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
We present a new practical framework based on deep reinforcement learning and decision-time planning for real-world vehicle on idle-hailing platforms.
Our approach learns ride-based state-value function using a batch training algorithm with deep value.
We benchmark our algorithm with baselines in a ride-hailing simulation environment to demonstrate its superiority in improving income efficiency.
arXiv Detail & Related papers (2021-03-08T05:34:05Z) - Affordance-based Reinforcement Learning for Urban Driving [3.507764811554557]
We propose a deep reinforcement learning framework to learn optimal control policy using waypoints and low-dimensional visual representations.
We demonstrate that our agents when trained from scratch learn the tasks of lane-following, driving around inter-sections as well as stopping in front of other actors or traffic lights even in the dense traffic setting.
arXiv Detail & Related papers (2021-01-15T05:21:25Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
This paper utilizes the deep reinforcement learning (DRL) method to address the continuous-horizon decision-making problem on the highway.
The running objective of the ego automated vehicle is to execute an efficient and smooth policy without collision.
The PPO-DRL-based decision-making strategy is estimated from multiple perspectives, including the optimality, learning efficiency, and adaptability.
arXiv Detail & Related papers (2020-08-26T22:49:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.