Bond-Order Density Wave Phases in Dimerized Extended Bose-Hubbard Models
- URL: http://arxiv.org/abs/2403.06649v1
- Date: Mon, 11 Mar 2024 12:15:18 GMT
- Title: Bond-Order Density Wave Phases in Dimerized Extended Bose-Hubbard Models
- Authors: Zeki Zeybek, Peter Schmelcher, Rick Mukherjee
- Abstract summary: Bond-order density wave phases (BODW) are characterized in terms of their symmetry breaking and topological properties.
Our work provides the bridge between interacting and non-interacting BODW phases and highlights the significance of long-range interactions in a dimerized lattice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Bose-Hubbard model (BHM) has been widely explored to develop a profound
understanding of the strongly correlated behavior of interacting bosons.
Quantum simulators not only allow the exploration of the BHM but also extend it
to models with interesting phenomena such as gapped phases with multiple orders
and topological phases. In this work, an extended Bose-Hubbard model involving
a dimerized one-dimensional model of long-range interacting hard-core bosons is
studied. Bond-order density wave phases (BODW) are characterized in terms of
their symmetry breaking and topological properties. At certain fillings,
interactions combined with dimerized hoppings give rise to an emergent
symmetry-breaking leading to BODW phases, which differs from the case of
non-interacting models that require an explicit breaking of the symmetry.
Specifically, the BODW phase at filling $\rho=1/3$ possesses no analogue in the
non-interacting model in terms of its symmetry-breaking properties and the unit
cell structure. Upon changing the dimerization pattern, the system realizes
topologically trivial BODW phases. At filling $\rho=1/4$, on-site density
modulations are shown to stabilize the topological BODW phase. Our work
provides the bridge between interacting and non-interacting BODW phases and
highlights the significance of long-range interactions in a dimerized lattice
by showing unique BODW phases that do not exist in the non-interacting model.
Related papers
- Quantum-interference-induced pairing in antiferromagnetic bosonic $t$-$J$ model [1.5064460450689483]
An antiferromagnetic bosonic $t$-$J$ model is investigated via large-scale density matrix renormalization group calculations.
We find that a pair density wave (PDW) of tightly bound hole pairs coexists with the AFM order forming a supersolid'' at small doping.
The pairing order collapses at larger doping to a superfluid of single-boson condensation with the spin background to a ferromagnetic (FM) order simultaneously.
arXiv Detail & Related papers (2024-09-23T18:00:04Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Impurity dephasing in a Bose-Hubbard model [0.0]
We study the dynamics of a two-level impurity embedded in a two-dimensional Bose-Hubbard model at zero temperature.
Results for the decoherence across the whole phase diagram are presented, with a focus on the critical region close to the transition between superfluid and Mott insulator.
arXiv Detail & Related papers (2020-11-27T14:44:13Z) - Phase and group velocities for correlation spreading in the Mott phase
of the Bose-Hubbard model in dimensions greater than one [0.0]
Lieb-Robinson and related bounds set an upper limit on the rate of spreading of information in non-relativistic quantum systems.
We use a recently developed two particle irreducible (2PI) strong coupling approach to out-of-equilibrium dynamics in the Bose-Hubbard model.
Our results establish the 2PI strong coupling approach as a powerful tool to study out-of-equilibrium dynamics in the Bose-Hubbard model in dimensions greater than one.
arXiv Detail & Related papers (2020-07-31T18:01:12Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Two-body repulsive bound pairs in multi-body interacting Bose-Hubbard
model [0.0]
We study the system of multi-body interacting bosons on a two dimensional optical lattice.
We analyze the formation of bound bosonic pairs in the context of the Bose-Hubbard model.
arXiv Detail & Related papers (2020-02-26T06:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.