Heat transport in the quantum Rabi model: Universality and ultrastrong coupling effects
- URL: http://arxiv.org/abs/2403.06909v2
- Date: Fri, 15 Mar 2024 08:50:19 GMT
- Title: Heat transport in the quantum Rabi model: Universality and ultrastrong coupling effects
- Authors: L. Magazzù, E. Paladino, M. Grifoni,
- Abstract summary: Heat transport in the quantum Rabi model at weak interaction with the heat baths is controlled by the qubit-oscillator coupling.
Universality of the linear conductance versus the temperature is found for $Tlesssim T_K$, with $T_K$ a coupling-dependent Kondo-like temperature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heat transport in the quantum Rabi model at weak interaction with the heat baths is controlled by the qubit-oscillator coupling. Universality of the linear conductance versus the temperature is found for $T\lesssim T_K$, with $T_K$ a coupling-dependent Kondo-like temperature. At low temperature, coherent heat transfer via virtual processes yields a $\sim T^3$ behavior with destructive interference in the presence of quasi-degeneracies in the spectrum. As the temperature increases, incoherent emission and absorption dominate and a maximum is reached at $T\sim T_K/2$. In the presence of a bias on the qubit, the conductance makes a transition from a resonant to a broad, zero-bias peak regime. Parallels and differences are found compared to the spin-boson model in [K. Saito and T. Kato, Phys. Rev. Lett. \textbf{111}, 214301 (2013)], where the qubit-bath coupling instead of the internal qubit-oscillator coupling rules thermal transport.
Related papers
- Spin-orbit coupled mean-field Bose gas at finite temperature [0.0]
We consider the spin-orbit coupled Bose gas with repulsive mean-field interparticle interactions.
We analyze the phase diagram of the system varying the temperature $T>0$, the chemical potentials, as well as interparticle and spin-orbit interaction couplings.
arXiv Detail & Related papers (2024-10-08T19:52:51Z) - Managing Temperature in Open Quantum Systems Strongly Coupled with Structured Environments [0.0]
We show how to reach either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials (T-TEDOPA) formalism in Hilbert space.
arXiv Detail & Related papers (2024-06-19T13:00:26Z) - Nonequilibrium quantum heat transport between structured environments [0.0]
We apply the hierarchical equations of motion technique to analyze nonequilibrium heat transport in a spin-boson type model.
We find the heat current to be drastically modified at weak system-bath coupling.
Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems.
arXiv Detail & Related papers (2024-03-20T18:20:12Z) - Nonlocal thermoelectric detection of interaction and correlations in
edge states [62.997667081978825]
We propose the nonlocal thermoelectric response as a direct indicator of the presence of interactions, nonthermal states and the effect of correlations.
A setup with two controllable quantum point contacts allows thermoelectricity to monitor the interacting system thermalisation.
arXiv Detail & Related papers (2023-07-18T16:28:59Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Dynamic Transport Characteristics of Side-Coupled Double
Quantum-Impurity Systems [3.9150069025045164]
Transport current behaves like a single quantum dot when the coupling strength is low during or coulomb coupling.
The amplitude of the current oscillation exists in positive correlation with $W$ and negative correlation with $U$.
arXiv Detail & Related papers (2021-12-16T03:28:35Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Dynamical Coulomb blockade under a temperature bias [0.0]
We observe and comprehend the dynamical Coulomb blockade suppression of the electrical conductance across an electronic quantum channel submitted to a temperature difference.
For a quantum channel in the tunnel regime, a close match is found between conductance measurements and tunnel dynamical Coulomb blockade theory.
In the opposite near ballistic regime, we develop a theory that accounts for different electronic and electromagnetic bath temperatures.
arXiv Detail & Related papers (2021-04-08T14:45:42Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.