How to Handle Sketch-Abstraction in Sketch-Based Image Retrieval?
- URL: http://arxiv.org/abs/2403.07203v2
- Date: Wed, 20 Mar 2024 19:31:15 GMT
- Title: How to Handle Sketch-Abstraction in Sketch-Based Image Retrieval?
- Authors: Subhadeep Koley, Ayan Kumar Bhunia, Aneeshan Sain, Pinaki Nath Chowdhury, Tao Xiang, Yi-Zhe Song,
- Abstract summary: We propose a sketch-based image retrieval framework capable of handling sketch abstraction at varied levels.
For granularity-level abstraction understanding, we dictate that the retrieval model should not treat all abstraction-levels equally.
Our Acc.@q loss uniquely allows a sketch to narrow/broaden its focus in terms of how stringent the evaluation should be.
- Score: 120.49126407479717
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a novel abstraction-aware sketch-based image retrieval framework capable of handling sketch abstraction at varied levels. Prior works had mainly focused on tackling sub-factors such as drawing style and order, we instead attempt to model abstraction as a whole, and propose feature-level and retrieval granularity-level designs so that the system builds into its DNA the necessary means to interpret abstraction. On learning abstraction-aware features, we for the first-time harness the rich semantic embedding of pre-trained StyleGAN model, together with a novel abstraction-level mapper that deciphers the level of abstraction and dynamically selects appropriate dimensions in the feature matrix correspondingly, to construct a feature matrix embedding that can be freely traversed to accommodate different levels of abstraction. For granularity-level abstraction understanding, we dictate that the retrieval model should not treat all abstraction-levels equally and introduce a differentiable surrogate Acc.@q loss to inject that understanding into the system. Different to the gold-standard triplet loss, our Acc.@q loss uniquely allows a sketch to narrow/broaden its focus in terms of how stringent the evaluation should be - the more abstract a sketch, the less stringent (higher q). Extensive experiments depict our method to outperform existing state-of-the-arts in standard SBIR tasks along with challenging scenarios like early retrieval, forensic sketch-photo matching, and style-invariant retrieval.
Related papers
- Efficient Exploration and Discriminative World Model Learning with an Object-Centric Abstraction [19.59151245929067]
We study whether giving an agent an object-centric mapping (describing a set of items and their attributes) allow for more efficient learning.
We find this problem is best solved hierarchically by modelling items at a higher level of state abstraction to pixels.
We make use of this to propose a fully model-based algorithm that learns a discriminative world model.
arXiv Detail & Related papers (2024-08-21T17:59:31Z) - Emergence and Function of Abstract Representations in Self-Supervised
Transformers [0.0]
We study the inner workings of small-scale transformers trained to reconstruct partially masked visual scenes.
We show that the network develops intermediate abstract representations, or abstractions, that encode all semantic features of the dataset.
Using precise manipulation experiments, we demonstrate that abstractions are central to the network's decision-making process.
arXiv Detail & Related papers (2023-12-08T20:47:15Z) - AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph [62.685920585838616]
abstraction ability is essential in human intelligence, which remains under-explored in language models.
We present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge.
arXiv Detail & Related papers (2023-11-15T18:11:23Z) - Conditional Human Sketch Synthesis with Explicit Abstraction Control [0.0]
We present a novel free-hand sketch synthesis approach addressing explicit abstraction control in class-conditional and photo-to-sketch synthesis.
We propose two novel abstraction control mechanisms, state embeddings and the stroke token, integrated into a transformer-based latent diffusion model.
arXiv Detail & Related papers (2023-06-15T16:54:58Z) - Does Deep Learning Learn to Abstract? A Systematic Probing Framework [69.2366890742283]
Abstraction is a desirable capability for deep learning models, which means to induce abstract concepts from concrete instances and flexibly apply them beyond the learning context.
We introduce a systematic probing framework to explore the abstraction capability of deep learning models from a transferability perspective.
arXiv Detail & Related papers (2023-02-23T12:50:02Z) - Abstracting Sketches through Simple Primitives [53.04827416243121]
Humans show high-level of abstraction capabilities in games that require quickly communicating object information.
We propose the Primitive-based Sketch Abstraction task where the goal is to represent sketches using a fixed set of drawing primitives.
Our Primitive-Matching Network (PMN), learns interpretable abstractions of a sketch in a self supervised manner.
arXiv Detail & Related papers (2022-07-27T14:32:39Z) - CLIPasso: Semantically-Aware Object Sketching [34.53644912236454]
We present an object sketching method that can achieve different levels of abstraction, guided by geometric and semantic simplifications.
We define a sketch as a set of B'ezier curves and use a differentiizer to optimize the parameters of the curves directly with respect to a CLIP-based perceptual loss.
arXiv Detail & Related papers (2022-02-11T18:35:25Z) - Value Function Spaces: Skill-Centric State Abstractions for Long-Horizon
Reasoning [120.38381203153159]
Reinforcement learning can train policies that effectively perform complex tasks.
For long-horizon tasks, the performance of these methods degrades with horizon, often necessitating reasoning over and composing lower-level skills.
We propose Value Function Spaces: a simple approach that produces such a representation by using the value functions corresponding to each lower-level skill.
arXiv Detail & Related papers (2021-11-04T22:46:16Z) - On Learning Semantic Representations for Million-Scale Free-Hand
Sketches [146.52892067335128]
We study learning semantic representations for million-scale free-hand sketches.
We propose a dual-branch CNNRNN network architecture to represent sketches.
We explore learning the sketch-oriented semantic representations in hashing retrieval and zero-shot recognition.
arXiv Detail & Related papers (2020-07-07T15:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.