Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models
- URL: http://arxiv.org/abs/2403.07304v2
- Date: Tue, 28 May 2024 12:32:31 GMT
- Title: Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models
- Authors: Yang Jiao, Shaoxiang Chen, Zequn Jie, Jingjing Chen, Lin Ma, Yu-Gang Jiang,
- Abstract summary: We propose a novel LMM architecture named Lumen, a Large multimodal model with versatile vision-centric capability enhancement.
Lumen first promotes fine-grained vision-language concept alignment.
Then the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders.
- Score: 87.47400128150032
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Multimodal Model (LMM) is a hot research topic in the computer vision area and has also demonstrated remarkable potential across multiple disciplinary fields. A recent trend is to further extend and enhance the perception capabilities of LMMs. The current methods follow the paradigm of adapting the visual task outputs to the format of the language model, which is the main component of a LMM. This adaptation leads to convenient development of such LMMs with minimal modifications, however, it overlooks the intrinsic characteristics of diverse visual tasks and hinders the learning of perception capabilities. To address this issue, we propose a novel LMM architecture named Lumen, a Large multimodal model with versatile vision-centric capability enhancement. We decouple the LMM's learning of perception capabilities into task-agnostic and task-specific stages. Lumen first promotes fine-grained vision-language concept alignment, which is the fundamental capability for various visual tasks. Thus the output of the task-agnostic stage is a shared representation for all the tasks we address in this paper. Then the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders with negligible training efforts. Comprehensive experimental results on a series of vision-centric and VQA benchmarks indicate that our Lumen model not only achieves or surpasses the performance of existing LMM-based approaches in a range of vision-centric tasks while maintaining general visual understanding and instruction following capabilities. The code will be released at https://github.com/SxJyJay/Lumen.
Related papers
- Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
Task Preference Optimization (TPO) is a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks.
By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance.
Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models.
arXiv Detail & Related papers (2024-12-26T18:56:05Z) - Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
We investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories.
Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance.
We propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions.
arXiv Detail & Related papers (2024-12-26T05:41:31Z) - Sparse Attention Vectors: Generative Multimodal Model Features Are Discriminative Vision-Language Classifiers [79.45405711339322]
Generative Large Multimodal Models (LMMs) excel at a wide variety of vision-language (VL) tasks such as image captioning or visual question answering.
We propose an approach for finding features in the model's latent space to more effectively leverage LMMs for discriminative tasks.
arXiv Detail & Related papers (2024-11-28T18:55:41Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - u-LLaVA: Unifying Multi-Modal Tasks via Large Language Model [17.3535277338312]
u-LLaVA is an innovative unifying multi-task framework that integrates pixel, regional, and global features to refine the perceptual faculties of MLLMs.
This work contributes a novel mask-based multi-task dataset comprising 277K samples, crafted to challenge and assess the fine-grained perception capabilities of MLLMs.
arXiv Detail & Related papers (2023-11-09T13:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.