How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
- URL: http://arxiv.org/abs/2403.07310v2
- Date: Tue, 19 Mar 2024 15:20:31 GMT
- Title: How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
- Authors: Hongkang Li, Shuai Zhang, Yihua Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen,
- Abstract summary: Group imbalance has been a known problem in empirical risk minimization.
This paper quantifies the impact of individual groups on the sample complexity, the convergence rate, and the average and group-level testing performance.
- Score: 64.1656365676171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group imbalance has been a known problem in empirical risk minimization (ERM), where the achieved high average accuracy is accompanied by low accuracy in a minority group. Despite algorithmic efforts to improve the minority group accuracy, a theoretical generalization analysis of ERM on individual groups remains elusive. By formulating the group imbalance problem with the Gaussian Mixture Model, this paper quantifies the impact of individual groups on the sample complexity, the convergence rate, and the average and group-level testing performance. Although our theoretical framework is centered on binary classification using a one-hidden-layer neural network, to the best of our knowledge, we provide the first theoretical analysis of the group-level generalization of ERM in addition to the commonly studied average generalization performance. Sample insights of our theoretical results include that when all group-level co-variance is in the medium regime and all mean are close to zero, the learning performance is most desirable in the sense of a small sample complexity, a fast training rate, and a high average and group-level testing accuracy. Moreover, we show that increasing the fraction of the minority group in the training data does not necessarily improve the generalization performance of the minority group. Our theoretical results are validated on both synthetic and empirical datasets, such as CelebA and CIFAR-10 in image classification.
Related papers
- The Group Robustness is in the Details: Revisiting Finetuning under Spurious Correlations [8.844894807922902]
Modern machine learning models are prone to over-reliance on spurious correlations.
In this paper, we identify surprising and nuanced behavior of finetuned models on worst-group accuracy.
Our results show more nuanced interactions of modern finetuned models with group robustness than was previously known.
arXiv Detail & Related papers (2024-07-19T00:34:03Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
We propose BAM, a novel two-stage training algorithm.
In the first stage, the model is trained using a bias amplification scheme via introducing a learnable auxiliary variable for each training sample.
In the second stage, we upweight the samples that the bias-amplified model misclassifies, and then continue training the same model on the reweighted dataset.
arXiv Detail & Related papers (2023-09-13T04:40:08Z) - Ranking & Reweighting Improves Group Distributional Robustness [14.021069321266516]
We propose a ranking-based training method called Discounted Rank Upweighting (DRU) to learn models that exhibit strong OOD performance on the test data.
Results on several synthetic and real-world datasets highlight the superior ability of our group-ranking-based (akin to soft-minimax) approach in selecting and learning models that are robust to group distributional shifts.
arXiv Detail & Related papers (2023-05-09T20:37:16Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - How does overparametrization affect performance on minority groups? [39.54853544590893]
We show that over parameterization always improves minority group performance.
In a setting in which the regression functions for the majority and minority groups are different, we show that over parameterization always improves minority group performance.
arXiv Detail & Related papers (2022-06-07T18:00:52Z) - Just Train Twice: Improving Group Robustness without Training Group
Information [101.84574184298006]
Standard training via empirical risk minimization can produce models that achieve high accuracy on average but low accuracy on certain groups.
Prior approaches that achieve high worst-group accuracy, like group distributionally robust optimization (group DRO) require expensive group annotations for each training point.
We propose a simple two-stage approach, JTT, that first trains a standard ERM model for several epochs, and then trains a second model that upweights the training examples that the first model misclassified.
arXiv Detail & Related papers (2021-07-19T17:52:32Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Label-Imbalanced and Group-Sensitive Classification under
Overparameterization [32.923780772605596]
Label-imbalanced and group-sensitive classification seeks to appropriately modify standard training algorithms to optimize relevant metrics.
We show that a logit-adjusted loss modification to standard empirical risk minimization might be ineffective in general.
We show that our results extend naturally to binary classification with sensitive groups, thus treating the two common types of imbalances (label/group) in a unifying way.
arXiv Detail & Related papers (2021-03-02T08:09:43Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
We identify two key properties of the training data that drive this behavior.
We show how the inductive bias of models towards "memorizing" fewer examples can cause over parameterization to hurt.
arXiv Detail & Related papers (2020-05-09T01:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.