VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark
- URL: http://arxiv.org/abs/2403.07350v3
- Date: Tue, 29 Oct 2024 09:31:22 GMT
- Title: VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark
- Authors: Han Huang, Haitian Zhong, Tao Yu, Qiang Liu, Shu Wu, Liang Wang, Tieniu Tan,
- Abstract summary: knowledge editing on large language models (LLMs) has received considerable attention.
The existing LVLM editing benchmark, which comprises three metrics (Reliability, Locality, and Generality), falls short in the quality of synthesized evaluation images.
We employ more reliable data collection methods to construct a new Large $textbfV$ision-$textbfL$anguage Model.
- Score: 53.091690659399234
- License:
- Abstract: Recently, knowledge editing on large language models (LLMs) has received considerable attention. Compared to this, editing Large Vision-Language Models (LVLMs) faces extra challenges from diverse data modalities and complicated model components, and data for LVLMs editing are limited. The existing LVLM editing benchmark, which comprises three metrics (Reliability, Locality, and Generality), falls short in the quality of synthesized evaluation images and cannot assess whether models apply edited knowledge in relevant content. Therefore, we employ more reliable data collection methods to construct a new Large $\textbf{V}$ision-$\textbf{L}$anguage Model $\textbf{K}$nowledge $\textbf{E}$diting $\textbf{B}$enchmark, $\textbf{VLKEB}$, and extend the Portability metric for more comprehensive evaluation. Leveraging a multi-modal knowledge graph, our image data are bound with knowledge entities. This can be further used to extract entity-related knowledge, which constitutes the base of editing data. We conduct experiments of different editing methods on five LVLMs, and thoroughly analyze how do they impact the models. The results reveal strengths and deficiencies of these methods and hopefully provide insights for future research. The codes and dataset are available at: https://github.com/VLKEB/VLKEB.
Related papers
- NeKo: Toward Post Recognition Generative Correction Large Language Models with Task-Oriented Experts [57.53692236201343]
We propose a Multi-Task Correction MoE, where we train the experts to become an expert'' of speech-to-text, language-to-text and vision-to-text datasets.
NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
arXiv Detail & Related papers (2024-11-08T20:11:24Z) - Great Memory, Shallow Reasoning: Limits of $k$NN-LMs [71.73611113995143]
$k$NN-LMs, which integrate retrieval with next-word prediction, have demonstrated strong performance in language modeling.
We ask whether this improved ability to recall information really translates into downstream abilities.
arXiv Detail & Related papers (2024-08-21T17:59:05Z) - Attribution Analysis Meets Model Editing: Advancing Knowledge Correction in Vision Language Models with VisEdit [18.71195974474024]
We use contribution allocation and noise perturbation methods to measure the contributions of visual representations for token predictions.
Our attribution analysis shows that visual representations in mid-to-later layers that are highly relevant to the prompt contribute significantly to predictions.
We propose VisEdit, a novel model editor for Vision-LLMs that effectively corrects knowledge by editing intermediate visual representations in regions important to the edit prompt.
arXiv Detail & Related papers (2024-08-19T11:44:40Z) - Detecting Edited Knowledge in Language Models [5.260519479124422]
Knowledge editing methods (KEs) can update language models' obsolete or inaccurate knowledge learned from pre-training.
Knowing whether a generated output is based on edited knowledge or first-hand knowledge from pre-training can increase users' trust in generative models.
We propose a novel task: detecting edited knowledge in language models.
arXiv Detail & Related papers (2024-05-04T22:02:24Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
We propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing.
Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs.
arXiv Detail & Related papers (2024-03-26T06:57:23Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - SWEA: Updating Factual Knowledge in Large Language Models via Subject Word Embedding Altering [17.20346072074533]
Recent model editing is a promising technique for efficiently updating a small amount of knowledge of large language models (LLMs)
We propose a detachable and expandable Subject Word Embedding Altering (SWEA) framework, which finds the editing embeddings through token-level matching.
We demonstrate the overall state-of-the-art (SOTA) performance of SWEA$oplus$OS on the textscCounterFact and zsRE datasets.
arXiv Detail & Related papers (2024-01-31T13:08:45Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUE benchmark aims to cover a broad range of video genres, video lengths, data volumes, and task difficulty levels.
We evaluate various baseline methods with and without large-scale VidL pre-training.
The significant gap between our best model and human performance calls for future study for advanced VidL models.
arXiv Detail & Related papers (2021-06-08T18:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.