Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning
- URL: http://arxiv.org/abs/2403.07362v4
- Date: Tue, 9 Jul 2024 03:59:01 GMT
- Title: Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning
- Authors: Chongyu Fan, Jiancheng Liu, Alfred Hero, Sijia Liu,
- Abstract summary: Machine unlearning (MU) aims to eliminate the influence of chosen data points on model performance.
Despite various MU methods for data influence erasure, evaluations have largely focused on random data forgetting.
We propose identifying the data subset that presents the most significant challenge for influence erasure, pinpointing the worst-case forget set.
- Score: 9.998859702421417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The trustworthy machine learning (ML) community is increasingly recognizing the crucial need for models capable of selectively 'unlearning' data points after training. This leads to the problem of machine unlearning (MU), aiming to eliminate the influence of chosen data points on model performance, while still maintaining the model's utility post-unlearning. Despite various MU methods for data influence erasure, evaluations have largely focused on random data forgetting, ignoring the vital inquiry into which subset should be chosen to truly gauge the authenticity of unlearning performance. To tackle this issue, we introduce a new evaluative angle for MU from an adversarial viewpoint. We propose identifying the data subset that presents the most significant challenge for influence erasure, i.e., pinpointing the worst-case forget set. Utilizing a bi-level optimization principle, we amplify unlearning challenges at the upper optimization level to emulate worst-case scenarios, while simultaneously engaging in standard training and unlearning at the lower level, achieving a balance between data influence erasure and model utility. Our proposal offers a worst-case evaluation of MU's resilience and effectiveness. Through extensive experiments across different datasets (including CIFAR-10, 100, CelebA, Tiny ImageNet, and ImageNet) and models (including both image classifiers and generative models), we expose critical pros and cons in existing (approximate) unlearning strategies. Our results illuminate the complex challenges of MU in practice, guiding the future development of more accurate and robust unlearning algorithms. The code is available at https://github.com/OPTML-Group/Unlearn-WorstCase.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
This paper introduces the concept of machine unlearning which is specifically designed to remove the influence of part of the dataset on an already trained forecaster.
A performance-aware algorithm is proposed by evaluating the sensitivity of local model parameter change using influence function and sample re-weighting.
We tested the unlearning algorithms on linear, CNN, andMixer based load forecasters with a realistic load dataset.
arXiv Detail & Related papers (2023-08-28T08:50:12Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
In continual learning, we store a subset of training examples (coreset) to be replayed later to alleviate catastrophic forgetting.
We propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration.
Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting.
arXiv Detail & Related papers (2021-06-02T11:39:25Z) - Deep F-measure Maximization for End-to-End Speech Understanding [52.36496114728355]
We propose a differentiable approximation to the F-measure and train the network with this objective using standard backpropagation.
We perform experiments on two standard fairness datasets, Adult, Communities and Crime, and also on speech-to-intent detection on the ATIS dataset and speech-to-image concept classification on the Speech-COCO dataset.
In all four of these tasks, F-measure results in improved micro-F1 scores, with absolute improvements of up to 8% absolute, as compared to models trained with the cross-entropy loss function.
arXiv Detail & Related papers (2020-08-08T03:02:27Z) - Self-Supervised Learning Aided Class-Incremental Lifelong Learning [17.151579393716958]
We study the issue of catastrophic forgetting in class-incremental learning (Class-IL)
In training procedure of Class-IL, as the model has no knowledge about following tasks, it would only extract features necessary for tasks learned so far, whose information is insufficient for joint classification.
We propose to combine self-supervised learning, which can provide effective representations without requiring labels, with Class-IL to partly get around this problem.
arXiv Detail & Related papers (2020-06-10T15:15:27Z) - Identifying and Compensating for Feature Deviation in Imbalanced Deep
Learning [59.65752299209042]
We investigate learning a ConvNet under such a scenario.
We found that a ConvNet significantly over-fits the minor classes.
We propose to incorporate class-dependent temperatures (CDT) training ConvNet.
arXiv Detail & Related papers (2020-01-06T03:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.