Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy
- URL: http://arxiv.org/abs/2403.07379v2
- Date: Mon, 24 Jun 2024 04:53:34 GMT
- Title: Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy
- Authors: Sidak Pal Singh, Bobby He, Thomas Hofmann, Bernhard Schölkopf,
- Abstract summary: We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
- Score: 75.15685966213832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fresh take on understanding the mechanisms of neural networks by analyzing the rich directional structure of optimization trajectories, represented by their pointwise parameters. Towards this end, we introduce some natural notions of the complexity of optimization trajectories, both qualitative and quantitative, which hallmark the directional nature of optimization in neural networks: when is there redundancy, and when exploration. We use them to reveal the inherent nuance and interplay involved between various optimization choices, such as momentum and weight decay. Further, the trajectory perspective helps us see the effect of scale on regularizing the directional nature of trajectories, and as a by-product, we also observe an intriguing heterogeneity of Q,K,V dynamics in the middle attention layers in LLMs and which is homogenized by scale. Importantly, we put the significant directional redundancy observed to the test by demonstrating that training only scalar batchnorm parameters some while into training matches the performance of training the entire network, which thus exhibits the potential of hybrid optimization schemes that are geared towards efficiency.
Related papers
- An Adaptive Tangent Feature Perspective of Neural Networks [4.900298402690262]
We consider linear transformations of features, resulting in a joint optimization over parameters and transformations with a bilinear constraint.
Specializing to neural network structure, we gain insights into how the features and thus the kernel function change.
We verify our theoretical observations in the kernel alignment of real neural networks.
arXiv Detail & Related papers (2023-08-29T17:57:20Z) - Neural Characteristic Activation Analysis and Geometric Parameterization for ReLU Networks [2.2713084727838115]
We introduce a novel approach for analyzing the training dynamics of ReLU networks by examining the characteristic activation boundaries of individual neurons.
Our proposed analysis reveals a critical instability in common neural network parameterizations and normalizations during convergence optimization, which impedes fast convergence and hurts performance.
arXiv Detail & Related papers (2023-05-25T10:19:13Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Training Scale-Invariant Neural Networks on the Sphere Can Happen in
Three Regimes [3.808063547958558]
We study the properties of training scale-invariant neural networks directly on the sphere using a fixed ELR.
We discover three regimes of such training depending on the ELR value: convergence, chaotic equilibrium, and divergence.
arXiv Detail & Related papers (2022-09-08T10:30:05Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
Empirically, the local minima of loss functions can be connected by a learned curve in model space along which the loss remains nearly constant.
We propose a more general framework to investigate effect of symmetry on landscape connectivity by accounting for the weight permutations of networks being connected.
arXiv Detail & Related papers (2020-09-05T02:25:23Z) - A Differential Game Theoretic Neural Optimizer for Training Residual
Networks [29.82841891919951]
We propose a generalized Differential Dynamic Programming (DDP) neural architecture that accepts both residual connections and convolution layers.
The resulting optimal control representation admits a gameoretic perspective, in which training residual networks can be interpreted as cooperative trajectory optimization on state-augmented systems.
arXiv Detail & Related papers (2020-07-17T10:19:17Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.