Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation
- URL: http://arxiv.org/abs/2403.07447v3
- Date: Wed, 06 Nov 2024 08:38:14 GMT
- Title: Ab-initio variational wave functions for the time-dependent many-electron Schrödinger equation
- Authors: Jannes Nys, Gabriel Pescia, Alessandro Sinibaldi, Giuseppe Carleo,
- Abstract summary: We introduce a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations.
We use time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations.
The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems.
- Score: 41.94295877935867
- License:
- Abstract: Understanding the real-time evolution of many-electron quantum systems is essential for studying dynamical properties in condensed matter, quantum chemistry, and complex materials, yet it poses a significant theoretical and computational challenge. Our work introduces a variational approach for fermionic time-dependent wave functions, surpassing mean-field approximations by accurately capturing many-body correlations. Therefore, we employ time-dependent Jastrow factors and backflow transformations, which are enhanced through neural networks parameterizations. To compute the optimal time-dependent parameters, we utilize the time-dependent variational Monte Carlo technique and a new method based on Taylor-root expansions of the propagator, enhancing the accuracy of our simulations. The approach is demonstrated in three distinct systems. In all cases, we show clear signatures of many-body correlations in the dynamics. The results showcase the ability of our variational approach to accurately capture the time evolution, providing insight into the quantum dynamics of interacting electronic systems, beyond the capabilities of mean-field.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Interpolating many-body wave functions for accelerated molecular dynamics on the near-exact electronic surface [0.0]
We develop a scheme for the correlated many-electron state through the space of atomic configurations.
We demonstrate provable convergence to near-exact potential energy surfaces for subsequent dynamics.
We combine this with modern electronic structure approaches to systematically resolve molecular dynamics trajectories.
arXiv Detail & Related papers (2024-02-16T22:03:37Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
We identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity.
We show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse.
In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic, sparse circuits.
arXiv Detail & Related papers (2023-04-19T17:37:10Z) - Quantifying spatio-temporal patterns in classical and quantum systems
out of equilibrium [0.0]
A rich variety of non-equilibrium dynamical phenomena and processes unambiguously calls for the development of general numerical techniques.
By the example of the discrete time crystal realized in non-equilibrium quantum systems we provide a complete low-level characterization of this nontrivial dynamical phase with only processing bitstrings.
arXiv Detail & Related papers (2023-02-28T13:27:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Influence functional of many-body systems: temporal entanglement and
matrix-product state representation [0.0]
Feynman-Vernon influence functional (IF) was originally introduced to describe the effect of a quantum environment on the dynamics of an open quantum system.
We apply the IF approach to describe quantum many-body dynamics in isolated spin systems.
arXiv Detail & Related papers (2021-03-25T10:41:15Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - A discrete memory-kernel for multi-time correlations in non-Markovian
quantum processes [0.0]
We show that the transfer-tensor method can be extended to processes which include multiple interrogations.
Our approach exploits the process-tensor description of open quantum processes to represent and propagate the dynamics.
arXiv Detail & Related papers (2020-07-07T07:00:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.