XpertAI: uncovering model strategies for sub-manifolds
- URL: http://arxiv.org/abs/2403.07486v1
- Date: Tue, 12 Mar 2024 10:21:31 GMT
- Title: XpertAI: uncovering model strategies for sub-manifolds
- Authors: Simon Letzgus, Klaus-Robert M\"uller, and Gr\'egoire Montavon
- Abstract summary: In regression, explanations need to be precisely formulated to address specific user queries.
We introduce XpertAI, a framework that disentangles the prediction strategy into multiple range-specific sub-strategies.
- Score: 1.2874569408514918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Explainable AI (XAI) methods have facilitated profound
validation and knowledge extraction from ML models. While extensively studied
for classification, few XAI solutions have addressed the challenges specific to
regression models. In regression, explanations need to be precisely formulated
to address specific user queries (e.g.\ distinguishing between `Why is the
output above 0?' and `Why is the output above 50?'). They should furthermore
reflect the model's behavior on the relevant data sub-manifold. In this paper,
we introduce XpertAI, a framework that disentangles the prediction strategy
into multiple range-specific sub-strategies and allows the formulation of
precise queries about the model (the `explanandum') as a linear combination of
those sub-strategies. XpertAI is formulated generally to work alongside popular
XAI attribution techniques, based on occlusion, gradient integration, or
reverse propagation. Qualitative and quantitative results, demonstrate the
benefits of our approach.
Related papers
- A Comparative Study on Reasoning Patterns of OpenAI's o1 Model [69.08287909042421]
We show that OpenAI's o1 model has achieved the best performance on most datasets.
We also provide a detailed analysis on several reasoning benchmarks.
arXiv Detail & Related papers (2024-10-17T15:09:03Z) - Model Agnostic Explainable Selective Regression via Uncertainty
Estimation [15.331332191290727]
This paper presents a novel approach to selective regression that utilizes model-agnostic non-parametric uncertainty estimation.
Our proposed framework showcases superior performance compared to state-of-the-art selective regressors.
We implement our selective regression method in the open-source Python package doubt and release the code used to reproduce our experiments.
arXiv Detail & Related papers (2023-11-15T17:40:48Z) - Domain Generalization via Rationale Invariance [70.32415695574555]
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments.
We propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix.
Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity.
arXiv Detail & Related papers (2023-08-22T03:31:40Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
We propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance.
arXiv Detail & Related papers (2023-07-18T04:26:33Z) - Theoretical Behavior of XAI Methods in the Presence of Suppressor
Variables [0.8602553195689513]
In recent years, the community of 'explainable artificial intelligence' (XAI) has created a vast body of methods to bridge a perceived gap between model 'complexity' and 'interpretability'
We show that the majority of the studied approaches will attribute non-zero importance to a non-class-related suppressor feature in the presence of correlated noise.
arXiv Detail & Related papers (2023-06-02T11:41:19Z) - Characterizing the contribution of dependent features in XAI methods [6.990173577370281]
We propose a proxy that modifies the outcome of any XAI feature ranking method allowing to account for the dependency among the predictors.
The proposed approach has the advantage of being model-agnostic as well as simple to calculate the impact of each predictor in the model in presence of collinearity.
arXiv Detail & Related papers (2023-04-04T11:25:57Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
Rule-based and modified backpropagation XAI approaches often face challenges when being applied to modern model architectures.
Model canonization is the process of re-structuring the model to disregard problematic components without changing the underlying function.
In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures.
arXiv Detail & Related papers (2022-11-30T17:17:55Z) - ReLACE: Reinforcement Learning Agent for Counterfactual Explanations of
Arbitrary Predictive Models [6.939617874336667]
We introduce a model-agnostic algorithm to generate optimal counterfactual explanations.
Our method is easily applied to any black-box model, as this resembles the environment that the DRL agent interacts with.
In addition, we develop an algorithm to extract explainable decision rules from the DRL agent's policy, so as to make the process of generating CFs itself transparent.
arXiv Detail & Related papers (2021-10-22T17:08:49Z) - Tree-based local explanations of machine learning model predictions,
AraucanaXAI [2.9660372210786563]
A tradeoff between performance and intelligibility is often to be faced, especially in high-stakes applications like medicine.
We propose a novel methodological approach for generating explanations of the predictions of a generic ML model.
arXiv Detail & Related papers (2021-10-15T17:39:19Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.