Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception
- URL: http://arxiv.org/abs/2403.07746v2
- Date: Thu, 6 Jun 2024 13:34:38 GMT
- Title: Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception
- Authors: Philipp Wolters, Johannes Gilg, Torben Teepe, Fabian Herzog, Anouar Laouichi, Martin Hofmann, Gerhard Rigoll,
- Abstract summary: We introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks.
Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions.
HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset.
- Score: 5.920946963698008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU. Code and models are available at https://github.com/phi-wol/hydra.
Related papers
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
Poor lighting or adverse weather conditions degrade camera performance.
Radar suffers from noise and positional ambiguity.
We propose RobuRCDet, a robust object detection model in BEV.
arXiv Detail & Related papers (2025-02-18T17:17:38Z) - Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception [9.76463525667238]
We propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction.
Code and models will be publicly available.
arXiv Detail & Related papers (2025-01-26T04:24:07Z) - MetaOcc: Surround-View 4D Radar and Camera Fusion Framework for 3D Occupancy Prediction with Dual Training Strategies [10.662778683303726]
We propose MetaOcc, a novel multi-modal occupancy prediction framework.
We first design a height self-attention module for effective 3D feature extraction from sparse radar points.
Finally, we develop a semi-supervised training procedure leveraging open-set segmentor and geometric constraints for pseudo-label generation.
arXiv Detail & Related papers (2025-01-26T03:51:56Z) - RaCFormer: Towards High-Quality 3D Object Detection via Query-based Radar-Camera Fusion [58.77329237533034]
We propose a Radar-Camera fusion transformer (RaCFormer) to boost the accuracy of 3D object detection.
RaCFormer achieves superior results of 64.9% mAP and 70.2% NDS on nuScenes, even outperforming several LiDAR-based detectors.
arXiv Detail & Related papers (2024-12-17T09:47:48Z) - RCBEVDet++: Toward High-accuracy Radar-Camera Fusion 3D Perception Network [34.45694077040797]
We present a radar-camera fusion 3D object detection framework called BEEVDet.
RadarBEVNet encodes sparse radar points into a dense bird's-eye-view feature.
Our method achieves state-of-the-art radar-camera fusion results in 3D object detection, BEV semantic segmentation, and 3D multi-object tracking tasks.
arXiv Detail & Related papers (2024-09-08T05:14:27Z) - CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity [34.025530326420146]
We develop Complementary-BEV, a novel end-to-end monocular 3D object detection framework.
We conduct extensive experiments on the public 3D detection benchmarks of roadside camera-based DAIR-V2X-I and Rope3D.
For the first time, the vehicle AP score of a camera model reaches 80% on DAIR-V2X-I in terms of easy mode.
arXiv Detail & Related papers (2023-10-04T13:38:53Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with Multi-Depth
Seeds for 3D Object Detection [89.26380781863665]
Fusing LiDAR and camera information is essential for achieving accurate and reliable 3D object detection in autonomous driving systems.
Recent approaches aim at exploring the semantic densities of camera features through lifting points in 2D camera images into 3D space for fusion.
We propose a novel framework that focuses on the multi-scale progressive interaction of the multi-granularity LiDAR and camera features.
arXiv Detail & Related papers (2022-09-07T12:29:29Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
This paper focuses on how to utilize millimeter-wave (MMW) radar and camera sensor fusion for 3D object detection.
A novel method which realizes the feature-level fusion under bird-eye view (BEV) for a better feature representation is proposed.
arXiv Detail & Related papers (2022-08-25T13:21:37Z) - BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation [105.96557764248846]
We introduce BEVFusion, a generic multi-task multi-sensor fusion framework.
It unifies multi-modal features in the shared bird's-eye view representation space.
It achieves 1.3% higher mAP and NDS on 3D object detection and 13.6% higher mIoU on BEV map segmentation, with 1.9x lower cost.
arXiv Detail & Related papers (2022-05-26T17:59:35Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving.
We develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods.
arXiv Detail & Related papers (2022-03-15T18:46:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.